Cho nửa đường tròn tâm O đường kình BC. Vẽ 2 tiếp tuyến Bx và Cy của (O) gọi A là điểm trên nửa đường tròn sao cho AB<AC. Tiếp tuyến tại A của (O) cắt Bx và Cy tại M và N.
a, Chứng minh: MN=BM+CN
b, Chứng minh: OM vuông góc AB và OM song son với AC
Chứng minh sau ứng với trường hợp 2 tiếp tuyến Bx và Cy nằm trên cùng 1 nửa mp bờ BC chứa nửa đtròn (O)
a) áp dụng t/c 2 tiếp tuyến cắt nhau là ra ngay nhé
b) Ta có: MA = MB (t/c 2 tiếp tuyến cắt nhau)
OA= R = OB
=> OM là trung trực đoạn AB => OM _|_ AB (đpcm)
mặt khác, AC _|_ AB (ABC^ = 90o, góc nt chắn nửa đtròn)
=> OM // AC (cùng _|_ AB) (đpcm)
trường hợp Bx và Cy nằm khác phía với nửa (O) trên mặt phẳng bờ BC thì bạn vẽ thêm nửa đtròn còn lại rồi chứng minh như trên.