cho k thuộc N* ,chứng tỏ rằng 2k+1 và 9k+4 là 2 số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu n là số chẵn thì n + 1 là số chẵn => 3n + 4 là số lẻ.
- Nếu n là số lẻ thì 3n + 4 là số chẵn => n + 1 là số lẻ.
Vậy, n + 1 là 3n + 4 là hai số nguyên tố cùng nhau.
gọi a là Ucln của 3n+4 và n+1
3n+4:a
n+1=3(n+1):a+3n+3
Vậy (3n+4)-(3n+3) :a
3n+4-3n-3 :a
=1:a
Vậy 3n+4 và n+1 là số nguyên tố cùng nhau
Gọi d là ƯCLN của a+1 và 3a+4
=>a+1 và 3a+4 chia hết cho d
=>(3a+4)-3(a+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(a+1,3a+4)=1
=>a+1 và 3a+4 nguyên tố cùng nhau (đpcm)
Gọi UCLN (a+1;3a+4)=d
=>a+1:d; 3a+4:d=>(3a+4)-(a+1):d
=>(3a+4)-3(a+1):d=>3a+4-3a-3:d=>1:d=>d =1 hoặc d = -1
=>a+1 và 3a+4 nguyên tố cùng nhau (đpcm)
Gọi d là ước nguyên tố của n+1 và 3n+4
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau
_Hok tốt_
!!!
Giải:
Gọi \(d=UCLN\left(n+1;3n+4\right)\)
Ta có:
\(n+1⋮d\Rightarrow3n+3⋮d\)
\(3n+4⋮d\)
\(\Rightarrow3n+4-3n+3⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=UCLN\left(n+1;3n+4\right)=1\)
\(\Rightarrow n+1\) và 3n + 4 là 2 số nguyên tố cùng nhau
Vậy...
CMR: n+1 & 3n+4 là 2 số nguyên tố cùng nhau
G/s: ƯCLN(n+1;3n+4) = d
Ta có:
n+1 =>3.(n+1) =>3n+3
3n+4=>1.(3n+4)=>3n+4
=> (3n+4) - (3n+3) \(⋮\) d
=> 3n+4 - 3n-3 \(⋮\) d
=> 1 \(⋮\) d => d \(\in\) ƯC(1) = \(\left\{1\right\}\)
KL: Vậy n+1 & 3n+4 là 2 số nguyên tố cùng nhau
Gọi ƯC(2k+1,9k+4)=d
Ta có: 2k+1 chia hết cho d=>9.(2k+1)=18k+9 chia hết cho d
9k+4 chia hết cho d=>2.(9k+4)=18k+8 chia hết cho d
=>18k+9-(18k+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2k+1,9k+4)=1
=>2k+1 và 9k+4 là 2 số nguyên tố cùng nhau