K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

a. \(P=a^2+ab+b^2-3a-3b+1989\)

\(4P=4a^2+4ab+4b^2-12a-12b+7956\)

\(4P=\left(4a^2+4ab+b^2\right)-\left(12a+6b\right)+9+\left(3b^2-6b+3\right)+7944\)

\(4P=\left(2a+b\right)^2-2.3\left(2a+b\right)+3^2+3\left(b^2-2b+1\right)+7944\)

\(4P=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7944\ge7944\)

\(\Rightarrow P\ge1986\)

\(\Rightarrow Min_P=1986\Leftrightarrow a=b=1\)

7 tháng 6 2018

Viết được bao nhiêu chữ số có 3 chữ số mà mỗi số chỉ có duy nhất 1 chữ số 4? 

7 tháng 6 2018

mình k'o hiểu lắm . Nếu mình thì mình đã giúp bạn rồi .Cho mình xin lỗi

7 tháng 6 2021

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

13 tháng 6 2020

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

13 tháng 6 2020

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

18 tháng 7 2018

\(R=\left(a^2+ab+\frac{1}{4}b^2\right)-3a-\frac{3}{2}b+\frac{3}{4}b^2-\frac{3}{2}b+2021\)

\(=\left(a+\frac{b}{2}\right)^2-3\left(a+\frac{b}{2}\right)^2+\frac{9}{4}+3\left(\frac{1}{4}b^2-\frac{1}{2}b+\frac{1}{4}\right)+2018\)

\(=\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2018\ge2018\forall a;b\)

Dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)

18 tháng 7 2018

\(R=\left(a^2+ab+\frac{1}{4}b^2\right)\)\(-3a-\) \(\frac{3}{2}b\) + \(\frac{3}{4}b^2-\frac{3}{4}b+2021\)

\(\Leftrightarrow\left(a+\frac{b}{2}\right)^2-3\left(a+\frac{b}{2}\right)^2\)\(+\frac{9}{4}+3\left(\frac{1}{4}b^2-\frac{1}{2}b+\frac{1}{4}+2018\right)\)

\(\Leftrightarrow\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2\)\(+2018\ge2018\forall a;b\)

\(Lưu\) \(ý\) \(:dấu\) \(=có\) \(thể\) \(thay\) \(thế\)  \(dấu\) \(\Leftrightarrow\)

NV
13 tháng 8 2021

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)