Cho tam giac ABC vuong tai A, M la mot diem tren BC, N va P lan luot la hinh chieu cua M len AB, AC.
a)Tim GTLN cua SANMP
b)AN.AB=AP.AC khi va chi khi AM la duong cao cua tam giac ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có D đối xứng vs a qua O (gt)
=> O là trung điểm của AD
Xét tứ giác ABCD có
BC cắt AD tại O
Mặt khác ta có O là trung điểm của BC
O là trung điểm của AD
nên tứ giác ABCD là hình bình hành
Xét hình bình hành ABCD có góc A = 900
=> Hình bình hànhABCD là hình chữ nhật
b, Xét tam giác AED có
AH = HE
AO = DO
=> HO là đường trung bình của tam giác
=> HO // ED
=> góc H bằng goc E vì đồng vị
Mà AH vuông góc vs BC
=> góc H = 90o
=> E bằng 90o
=> AE vuông góc vs ED
Xét tam giác AED c0s E bằng 90 độ nên tam giác ADE vuông
c,Đợi tí mình giải tiếp nhé
a) Ta có: A và D đối xứng với nhau qua O(gt)
⇒O là trung điểm của AD
Xét tứ giác ABDC có:
O là trung điểm của đường chéo BC(gt)
O là trung điểm của đường chéo AD(cmt)
mà \(BC\cap AD=\left\{O\right\}\)
Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90\)độ(ΔCAB cân tại A)
nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)* chứng minh ΔAED vuông
Kẻ EO
Xét ΔOHA (\(\widehat{OHA}=90\) độ) và ΔOHE (\(\widehat{OHE}=90\) độ) có
OH là cạnh chung
HA=HE(gt)
Do đó: ΔOHA=ΔOHE(hai cạnh góc vuông)
⇒OA=OE(hai cạnh tương ứng)
mà \(OA=\frac{AD}{2}\)(do O là trung điểm của AD)
nên \(OE=\frac{AD}{2}\)
Xét ΔAED có:
OE là đường trung tuyến ứng với cạnh AD (do O là trung điểm của AD)
mà \(OE=\frac{AD}{2}\)(cmt)
nên ΔAED vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)
* chứng minh CE⊥BE
Ta có: AO là đường trung tuyến ứng với cạnh huyền BC của ΔCAB vuông tại A(do O là trung điểm của BC)
⇒\(AO=\frac{BC}{2}\)(định lí 1 về từ hình chữ nhật áp dụng vào tam giác vuông)
mà AO=OE(cmt)
nên \(EO=\frac{BC}{2}\)
Xét ΔCEB có:
EO là đường trung tuyến ứng với cạnh BC(do O là trung điểm của BC)
mà \(EO=\frac{BC}{2}\)(cmt)
nên ΔCEB vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)
hay \(\widehat{CEB}=90\) độ
⇒CE⊥BE(đpcm)