K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay a=-2 vào pt, ta được:

\(-2x^2-2\cdot\left(-2-1\right)x-2+1=0\)

\(\Leftrightarrow-2x^2+6x-1=0\)

\(\Leftrightarrow2x^2-6x+1=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot2\cdot1=36-8=28>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{7}}{2}=3-\sqrt{7}\\x_2=3+\sqrt{7}\end{matrix}\right.\)

b: Để phương trình có hai nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}\left(-2a+2\right)^2-4a\left(a+1\right)>0\\a< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a^2-8a+4-4a^2-4a>0\\a< >0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-12a>-4\\a< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a< >0\\a< \dfrac{1}{3}\end{matrix}\right.\)

 

14 tháng 6 2021

\(A=\dfrac{2\sqrt{x}+17}{\sqrt{x+5}}=\dfrac{2\sqrt{x}+10}{\sqrt{x}+5}+\dfrac{7}{\sqrt{x}+5}=2+\dfrac{7}{\sqrt{x}+5}\) 

Để \(A\) ∈ \(Z\) thì \(\dfrac{7}{\sqrt{x}+5}\) phải ∈ \(Z\)

=> \(\sqrt{x}+5\) ∈ \(Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

# Với \(\sqrt{x}+5=-7=>\sqrt{x}=-12\)(Loại)

#Với \(\sqrt{x}+5=-1=>\sqrt{x}=-6\)(Loại)

#Với \(\sqrt{x}+5=1=>\sqrt{x}=-4\left(Loại\right)\)

#Với \(\sqrt{x}+5=7=>\sqrt{x}=2< =>x=4\left(Nhận\right)\)

Vậy \(x=4\) thì \(A\)\(Z\)

28 tháng 9 2021

\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}3\)

\(Ta\) \(Có\) : \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}=\sqrt[3]{\dfrac{a^6}{ab.ab\left(a^2-ab+b^2\right)}}=\dfrac{a^2}{\sqrt[3]{ab.ab.\left(a^2-ab+b^2\right)}}\) 

\(Áp\) \(dụng\) \(bđt\) \(AM-GM\) 

\(\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}\text{≤}\)  \(\dfrac{ab+ab+a^2-ab+b^2}{3}\) 

\(=>\dfrac{a^2}{\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}}\) \(\text{≥}\) \(\dfrac{3a^2}{a^2+ab+b^2}\) \(Hay\) \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}\text{≥}\dfrac{3a^2}{a^2+ab+b^2}\)

Tương tự ta cũng có : 

\(\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\text{≥}\dfrac{3b^2}{b^2+bc+c^2}\) 

\(\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+a^2\right)}}\text{≥}\dfrac{3c^2}{a^2+ac+c^2}\)

\(=>\text{​​}\text{​​}\)\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\)  \(\text{≥}\) \(3\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) 

Cần c/m \(\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) ≥ \(1\) 

Ta có : \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\) 

\(< =>3a^2\text{≥}a^2+ab+b^2\) \(< =>2a^2-b\left(a+b\right)\text{≥}0\) (1)

Lại có : \(a^2\text{≥}-b\left(a+b\right)\) (2)

Từ (1) và (2) => \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\)

Tương tự ta cũng có :

 \(\dfrac{b^2}{b^2+bc+c^2}\text{≥}\dfrac{1}{3}\) 

\(\dfrac{c^2}{a^2+ac+c^2}\text{≥}\dfrac{1}{3}\)

Do đó \(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\text{≥}1\)

Suy ra :  \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}\) \(3\) 

Đẳng thức xảy ra <=> \(a=b=c=1\)

 

 

 

10 tháng 6 2021

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

8 tháng 11 2023

bài giải

1 người xây trong số ngày là:

6 x 8 = 48 ( ngày )

làm trong 4 ngày cần số người là:

48 : 4 = 12 ( người )

vậy 4 ngày thêm số người là:

12 - 8 = 4 ( người )

đáp số : 4 người

7 tháng 11 2023

muốn xây xong 1 bức tường trong 6 ngày cần 8 người. vậy 4 ngày cần thêm bao nhiêu người?

1) Xét ΔAMB và ΔAMC có 

AB=AC(ΔBAC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔAMB=ΔAMC(c-c-c)

Suy ra: \(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

hay AM\(\perp\)BC

Ta có: ΔAMB=ΔAMC(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

3) Xét ΔABC có 

H là trung điểm của AB(gt)

K là trung điểm của AC(gt)

Do đó: HK là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: HK//BC(Định lí 2 về đường trung bình của tam giác)

Câu 2: 

a) Xét tứ giác KPIQ có 

\(\widehat{KPI}\) và \(\widehat{KQI}\) là hai góc đối

\(\widehat{KPI}+\widehat{KQI}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KPIQ là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

\(M=\left(\dfrac{x+3}{x-3}-\dfrac{18}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-3}{x+3}\right):\dfrac{x+3-x-1}{x+3}\)

\(=\dfrac{x^2+6x+9-18+x^2-6x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{2}\)

\(=\dfrac{2x^2}{x-3}\cdot\dfrac{1}{2}=\dfrac{x^2}{x-3}\)

b: Để M nguyên thì \(x^2-9+9⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(x\in\left\{4;2;6;0;12;-6\right\}\)

20 tháng 5 2021

26C 27A 28A 29C 30D

31 she is a teacher

32 she is tall

33 is coming

34 to sit

35 is going to have

36 is fatter than her mother

37 is this book

38 oranges would you like

39 go fishing

40 fly to Hong Kong

20 tháng 5 2021

26 C

27 A

28 A

29 C

30 D

31 She is a teacher

32 She is tall

33 is coming

34 to sit

35 is going to have

36 My father is fatter than my mother

37 How much is this book?

38 How many oranges would you like?

39 Let's go fishing

40 Lam always flies to Hong Kong