1,tính nhanh
a,1+3+5+7+9+....+2007++2009+2011x(125125x127+127127x125)
b,\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
2,Tìm \(x\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\cdot\left(x+1\right)}=\frac{1011}{2013}\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\)
\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}\cdot\frac{14}{15}\)
\(=\frac{7}{15}\)
Sửa đề chút nhé:
\(\left(1+3+5+7+...+2009+2011\right).\left(125125.127-127127.125\right)\)
\(=\left(1+3+5+7+...+2009+2011\right).\left(125.1001.127-127.1001.125\right)\)
\(=\left(1+3+5+7+...+2009+2011\right).0\)
\(=0\)
Ý b tham khảo bài bạn nguyen thi thuy linh nhé