Cho a/b = c/d
Chứng minh:
Câu a
a^2-b^2/c^2-d^2=ab/cd
Câu b
(a-b)^2/(c-d)^2=ab/cd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
Áp dụng dãy tỉ số bằng nhau ta có;
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
=> đpcm
Chúc bạn làm bài tốt
bạn xem cái m đầu tiên đi nhé, mình thấy nó sao sao ấy, mình sẽ làm kia cho bạn
đặt
\(\dfrac{a}{b}=\dfrac{c}{d}=n\\ < =>\left\{{}\begin{matrix}a=bn\\c=dn\end{matrix}\right.\)
có
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ =\left(\dfrac{bn+b}{dn+d}\right)^2\\ =\left[\dfrac{b\left(n+1\right)}{d\left(n+1\right)}\right]^2\\ =\left(\dfrac{b}{d}\right)^2\left(1\right)\)
và
\(\dfrac{a^2+b^2}{c^2+d^2}\\ =\dfrac{\left(bn\right)^2+b^2}{\left(dn\right)^2+d^2}\\ =\dfrac{b^2n^2+b^2}{d^2n^2+d^2}\\ =\dfrac{b^2\left(n^2+1\right)}{d^2\left(n^2+1\right)}\\ =\dfrac{b^2}{d^2}\\ =\left(\dfrac{b}{d}\right)^2\left(2\right)\)
từ 1 và 2
=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
ko hiểu chỗ nào thì hỏi mình nhé, mình nói cho :)
chúc may mắn
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\\ \Rightarrow cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\\ \Rightarrow a^2cd+b^2cd=abc^2+abd^2\\ \Rightarrow a^2cd+b^2cd-abc^2-abd^2=0\\ \Rightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\\ \Rightarrow\left(ac-bd\right)\left(ad-bc\right)=0\\\Rightarrow \left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{matrix}\right.\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{matrix}\right.\left(đpcm\right).\)
Chúc bạn học tốt!
Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\left(1\right)\)
a) Thay (1) vào đề:
\(VT=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(VP=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)
b) Thay (1) vào đề bài:
\(\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)
Theo câu a) \(\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)