Cho tam giác ABC, góc A nhọn. Vẽ các đường cao BD và CE. Trên tia đối tia BD lấy điểm I, trên tia đối tia CE lấy điểm K sao cho BI = AC và CK = AB. Chứng minh rằng tam giác AIK vuông cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ không vẽ hình, cậu tự vẽ nha<<<
GIẢI:
Ta có :
\(ABD+BAC=90^0\)
\(ACE+BAC=90^0\)
\(\Rightarrow ABD=ACE\)
Mà : \(ABD+ADI=180^0\)
\(ACE+ACK=180^0\)
\(\Rightarrow ADI=ACK\)
Xét tam giác ABI và KCA có:
\(AB=KC\left(GT\right)\)
\(ADI=ACK\left(CMtrên\right)\)
\(BI=CA\left(GT\right)\)
\(\Rightarrow TgABI=TgKCA\left(c.g.c\right)\)
\(\Rightarrow AI=KA\)( cặp cạnh tương ứng)
\(\Rightarrow\)Tam giác AIK cân tại A (1)
Vì tgABI=tgKCA
\(\Rightarrow IAB=AKC\) ( cặp góc tương ứng)
Mặt khác : \(AKC+BAC+KAC=90^0\)
\(\Rightarrow IAB+BAC+KAC=90^0\)hay \(IAK=90^0\)(2)
Từ (1) và (2) suy ra :
TG AIK vuông cân tại A
( tớ không làm được kí hiệu góc mong cậu thông cảm )
Tự vẽ hình nha
Ta có :
\(\widehat{ABD}\)\(+\)\(\widehat{BAC}\)\(=90^o\)
\(\widehat{ACE}\)\(+\)\(\widehat{BAC}\) \(=90^o\)
\(\Rightarrow\widehat{ABD}\)\(=\)\(\widehat{ACE}\)
Mà \(\widehat{ABD}\)\(+\)\(\widehat{ADI}\)\(=180^o\)
\(\widehat{ACE}\)\(+\)\(\widehat{ACK}\)\(=180^o\)
\(\Rightarrow\widehat{ADI}\)\(=\widehat{ACK}\)
Xét \(\Delta ABI\) và \(\Delta KCA\)có :
\(AB=KC\left(gt\right)\)
\(\widehat{ADI}\)\(=\)\(\widehat{ACK}\)\(\left(cmt\right)\)
\(BI=CA\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta KCA\left(c.g.c\right)\)
\(\Rightarrow AI=KA\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta AKI\)cân tại A (1)
Vì \(\Delta ABI=\Delta KCA\)
\(\Rightarrow\widehat{AIB}\)\(=\)\(\widehat{KAC}\) ( cặp góc tương ứng )
Mặt khác : \(\widehat{AKC}\)\(+\)\(\widehat{BAC}\)\(+\)\(\widehat{KAC}\)\(=90^o\)
\(\Rightarrow\widehat{IAB}\)\(+\)\(\widehat{BAC}\)\(+\)\(\widehat{KAC}\)\(=90^o\)hay \(\widehat{IAK}\)\(=90^o\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\):
\(\Rightarrow\Delta AIK\)vuông cân tại \(A\)
bùi thị ánh phương bn tham khảo tại link :
Câu hỏi của Phuong Truc - Toán lớp 7 | Học trực tuyến
Góc ABD= góc ACE (hai góc có cạnh tương ứng vuông góc cùng nhọn)
Suy ra góc ABI= góc KCA (cùng bù vk hai góc bằng nhau)
Tam giác ABI= tam giác KCA (c-g-c)
Suy ra AI=AK (1) và góc BAI=góc K
Xét tam giác EAK vuông tại E có góc BAK+góc BAI=90o
Hay góc IAK=900 (2)
Từ (1) và (2) suy ra tam giác AIK vuông cân tại A (đpcm)
chịu bn ns cng có hình cho dễ nhìn r mink mới giúp được
Tam giác ABI = Tam giác KCA(c.g.c)
Suy ra: AI = AK và góc I = góc CAK
Ta có: góc I + góc IAD = 90 độ
góc CAK + góc IAD = 90 độ
IAK = 90 độ
Tam giác AIK có: góc IAK = 90 độ và AI = AK
Vậy tam giác AIK vuông cân tại A.
Dễ thấy ^ABD = ^ACE (Cùng phụ ^BAC) <=> 1800 - ^ABD = 1800 - ^ACE => ^ABI = ^KCA
Xét \(\Delta\)AIB và \(\Delta\)KAC: AB=KC; ^ABI = ^KCA; IB = AC => \(\Delta\)AIB = \(\Delta\)KAC (c.g.c)
=> AI = KA (2 cạnh tương ứng) (1)
Và ^AIB = ^KAC. Ta có: ^ABD là góc ngoài \(\Delta\)AIB => ^ABD = ^AIB + ^BAI
=> ^ABD = ^KAC + ^BAI. Mà ^ABD + ^BAC = 900 (Do \(\Delta\)ADB vuông ở D)
=> ^KAC + ^BAI + ^BAC = 900 => ^IAK = 900 (2)
Từ (1) và (2) => \(\Delta\)AIK vuông cân tại A (đpcm).