so sánh: \(\left(\frac{16}{25}\right)^{10}\) và \(\left(\frac{3}{7}\right)^{40}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
a)
Vì 3<5
\(\Rightarrow3^{30}< 5^{30}\)
\(\Rightarrow\left(-3\right)^{30}< \left(-5\right)^{30}\)
b)
Ta có
\(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^4\right]^{10}.\left(\frac{1}{2}\right)^{10}\)
\(=\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}\)
Ta có
\(\left(\frac{1}{2}\right)^{10}< 1\)
\(\Leftrightarrow\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{16}\right)^{10}\)
Ta có
\(A=\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\) \(B=\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
\(\Leftrightarrow A=\frac{\left(\frac{17}{5}+\frac{1}{5}\right):\frac{5}{2}}{\left(\frac{38}{7}-\frac{9}{4}\right):\frac{276}{56}}\) \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(\frac{6}{5}-\frac{5}{4}\right)}{\frac{8}{25}+\frac{2}{25}}\)
\(\Leftrightarrow A=\frac{\frac{18}{5}:\frac{5}{2}}{\frac{89}{28}:\frac{276}{56}}\) \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(-\frac{1}{20}\right)}{\frac{2}{5}}\)
\(\Leftrightarrow A=\frac{\frac{36}{25}}{\frac{89}{138}}\) \(\Leftrightarrow B=\frac{\frac{5}{4}}{\frac{2}{5}}\)
\(\Leftrightarrow A=\frac{4968}{2225}\) \(\Leftrightarrow B=\frac{25}{8}\)
\(\Leftrightarrow A=\frac{39744}{17800}\) \(\Leftrightarrow B=\frac{55625}{17800}\)
Ta có: 39744<55625
\(\Rightarrow A< B\)
Vậy A<B
ta có: \(\left(\frac{16}{25}\right)^{10}=\left[\left(\frac{4}{5}\right)^2\right]^{10}=\left(\frac{4}{5}\right)^{20}\)
\(\left(\frac{3}{7}\right)^{40}=\left[\left(\frac{3}{7}\right)^2\right]^{20}=\left(\frac{9}{49}\right)^{20}\)
mà \(\frac{4}{5}>\frac{9}{49}\)
\(\Rightarrow\left(\frac{4}{5}\right)^{20}>\left(\frac{9}{49}\right)^{20}\)
\(\Rightarrow\left(\frac{16}{25}\right)^{10}>\left(\frac{3}{7}\right)^{40}\)
Đầu tiên ta so sánh 16/25 với 3/7 bằng phương pháp quy đồng mẫu ta được 112/175 > 75/175
Mà với các phân số có tử nhỏ hơn mẫu thì càng lũy thừa >1, phân số càng nhỏ đi. 3/7 có số mũ vượt trội nên khỏi bàn cãi, (3/7)^40 nhỏ hơn rất nhiều.