K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác EAFH có 

\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: EAFH là hình chữ nhật

26 tháng 9 2021

undefined

15 tháng 10 2016

online math cho 0 diem di

17 tháng 6 2016

Hình tự túc, bùn ngủ => ko vẽ nữa.

a) Ta có: AC _|_ AB ; HE _|_ AB =>  AC // HE

=> FHA^ = EAH^ (sole trong)

    FAH^ = EHA^ (sole trong)

Xét \(\Delta\)FAH và \(\Delta\)EHA :

FHA^ = EAH^ 

AH chung

FAH^ = EHA^ 

=> \(\Delta\)FAH = \(\Delta\)EHA (g.c.g)

=> FA = EH (2 cạnh tương ứng)

Xét \(\Delta\)FAE và \(\Delta\)HEA:

FAE^ = HEA^ =90o

FA = EH (cmt)

AE chung

=> \(\Delta\)FAE = \(\Delta\)HEA (2 cạnh góc vuông)

=> FE = HA (2 cạnh tương ứng)

b) Bn ơi, chữ EI hơi lạ. Xem lại nhé.

a) Xét tứ giác EAFH có 

\(\widehat{AFH}=90^0\)

\(\widehat{FAE}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: EAFH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: \(\widehat{IAC}=90^0-\widehat{AFE}\)

\(\widehat{ICA}=90^0-\widehat{B}\)

mà \(\widehat{AFE}=\widehat{B}\left(=\widehat{HAC}\right)\)

nên \(\widehat{IAC}=\widehat{ICA}\)

mà \(\widehat{IBA}=90^0-\widehat{ICA}\)

và \(\widehat{IAB}=90^0-\widehat{IAC}\)

nên \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Xét ΔIAC có \(\widehat{IAC}=\widehat{ICA}\)(cmt)

nên ΔIAC cân tại I(Định lí đảo của tam giác cân)

Ta có: IA=IB(ΔIAB cân tại I)

IA=IC(ΔIAC cân tại I)

Do đó: IB=IC

mà I nằm giữa B và C

nên I là trung điểm của BC(Đpcm)

9 tháng 7 2021

cho mik xin hình vs ạ hihi

20 tháng 4 2023

Bạn tự vẽ hình. Gợi ý:

- Chứng minh tứ giác AEHF là hình chữ nhật.

*Gọi K là giao điểm của AH và EF. Khi đó K là trung điểm AH.

- Chứng minh tam giác AHM cân tại A. Suy ra \(\widehat{MAB}=\widehat{HAB}\)

Mặt khác \(\widehat{HAB}=\widehat{ABI}\) (BI//AH) \(\Rightarrow\widehat{MAB}=\widehat{ABI}\)

\(\Rightarrow\)△ABI cân tại I nên AI=BI.

*CA cắt BI tại S. Chứng minh I là trung điểm BS.

Đến đây bài toán đã trở nên đơn giản hơn (chỉ chú ý vào các điểm C,A,H,B,S và K).

- CK cắt BS tại I'. Khi đó ta cũng c/m được I' là trung điểm BS.

\(\Rightarrow I\equiv I'\) nên C,K,I thẳng hàng.

Suy ra đpcm.