Cho tam giác ABC vuông tậ A, đường cao AH. Gọi E, F lần lượt là chân các đường vuông góc kẻ từ H đến AB, AC. M là trung điểm của BC.
a) Chứng minh EF vuông góc với AM
b)Gọi S là diện tích tam giác ABC. Chứng minh 2S=AH^4/HE.HF
Làm câu b) được rồi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác EAFH có
\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)
Do đó: EAFH là hình chữ nhật
Hình tự túc, bùn ngủ => ko vẽ nữa.
a) Ta có: AC _|_ AB ; HE _|_ AB => AC // HE
=> FHA^ = EAH^ (sole trong)
FAH^ = EHA^ (sole trong)
Xét \(\Delta\)FAH và \(\Delta\)EHA :
FHA^ = EAH^
AH chung
FAH^ = EHA^
=> \(\Delta\)FAH = \(\Delta\)EHA (g.c.g)
=> FA = EH (2 cạnh tương ứng)
Xét \(\Delta\)FAE và \(\Delta\)HEA:
FAE^ = HEA^ =90o
FA = EH (cmt)
AE chung
=> \(\Delta\)FAE = \(\Delta\)HEA (2 cạnh góc vuông)
=> FE = HA (2 cạnh tương ứng)
b) Bn ơi, chữ EI hơi lạ. Xem lại nhé.
a) Xét tứ giác EAFH có
\(\widehat{AFH}=90^0\)
\(\widehat{FAE}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: EAFH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: \(\widehat{IAC}=90^0-\widehat{AFE}\)
\(\widehat{ICA}=90^0-\widehat{B}\)
mà \(\widehat{AFE}=\widehat{B}\left(=\widehat{HAC}\right)\)
nên \(\widehat{IAC}=\widehat{ICA}\)
mà \(\widehat{IBA}=90^0-\widehat{ICA}\)
và \(\widehat{IAB}=90^0-\widehat{IAC}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIAB cân tại I(Định lí đảo của tam giác cân)
Xét ΔIAC có \(\widehat{IAC}=\widehat{ICA}\)(cmt)
nên ΔIAC cân tại I(Định lí đảo của tam giác cân)
Ta có: IA=IB(ΔIAB cân tại I)
IA=IC(ΔIAC cân tại I)
Do đó: IB=IC
mà I nằm giữa B và C
nên I là trung điểm của BC(Đpcm)
Bạn tự vẽ hình. Gợi ý:
- Chứng minh tứ giác AEHF là hình chữ nhật.
*Gọi K là giao điểm của AH và EF. Khi đó K là trung điểm AH.
- Chứng minh tam giác AHM cân tại A. Suy ra \(\widehat{MAB}=\widehat{HAB}\)
Mặt khác \(\widehat{HAB}=\widehat{ABI}\) (BI//AH) \(\Rightarrow\widehat{MAB}=\widehat{ABI}\)
\(\Rightarrow\)△ABI cân tại I nên AI=BI.
*CA cắt BI tại S. Chứng minh I là trung điểm BS.
Đến đây bài toán đã trở nên đơn giản hơn (chỉ chú ý vào các điểm C,A,H,B,S và K).
- CK cắt BS tại I'. Khi đó ta cũng c/m được I' là trung điểm BS.
\(\Rightarrow I\equiv I'\) nên C,K,I thẳng hàng.
Suy ra đpcm.