Vẽ tam giác ABC, biết AB = \(8\sqrt{2}\)cm, góc A = góc B = 45 độ . Sau đó hãy đo cạnh AC, BC và đưa ra nhận xét.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Vì ∆ABC cân tại A, nên AB và AC là 2 cạnh bên
ð AB = AC = 2cm
- Vì ∆ABC cân tại A, nên góc B = góc C = 45 độ (2 góc đáy của một tam giac)
Ta có : góc A + góc B + góc C = 180 độ (tổng 3 góc trong một tam giac)
Góc A + 45 độ + 45 độ = 180 độ
ð Góc A = 180 độ - 45 độ - 45 độ
ð Góc A = 90
Nhận xét về ∆ABC :
Tam giác ∆ABC là tam giác vuông (vuông và cân tại A)
Vì AB=AC=3cm
=> tam giác ABC cân tại A
=> B=C
Mà góc A=90 độ nên góc B và góc C phụ nhau.
Ta có: góc B=góc C=90/2=45 độ
Vay goc B va goc C cô số đó là 45 độ
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH=50/2=25 độ
c: góc AKC=góc AHC=90 độ
=>AKHC nội tiếp
=>góc KAH=góc KCH
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
I don't now
sorry
.....................
Đo và thấy rằng AC = 8 cm, AB = 8 cm.
Từ đó ta có nhận xét:
+ Tam giác ABC vuông cân tại C, AB = AC = 8 cm.
+ \(AB^2=CA^2+CB^2\)