K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

a, S= 1/1*2 + 1/2*3 + 1/3*4 +...+1/99*100
    S= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
    S= 1/1 - 1/100
    S= 100/100 - 1/100
    S= 99/100

b, S= 1/1*3 + 1/3*5 + 1/5*7 +...+1/99*101
    S= 1/2* (2/1*3 + 2/3*5 + 2/5*7 +...+ 2/99*101)
    S= 1/2* (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/99 - 1/101)
    S= 1/2* (1/1 - 1/101)
    S= 1/2* (101/101 - 1/101)
    S= 1/2* 100/101
    S= 50/101
Chúc bạn học tốt nha

4 tháng 10 2022

ai bt tự làm

 

15 tháng 4 2023

ngu tự chịu

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

24 tháng 2 2018

a)\(1-2+3-4+5-6+7-8+8-9+9-10\)

=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)

\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(=\left(-1\right).6\)

\(=-6\)

b)\(1-2+3-4+...+99-100\)

\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)

\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)

\(=\left(-1\right).50\)

\(=-50\)

c)\(1-3+5-7+9-11+13-15\)

\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)

\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)

\(=\left(-2\right).4\)

\(=-8\)

d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi

\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)

\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)

\(=\left(-2\right).25\)

\(=-50\)

e)\(-1-2-3-4-...-99-100\)

\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)

\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))

\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)

\(=\left(-100\right).50\)

\(=-5000\)

24 tháng 2 2018

a, -5

b, -50

c, -8

d, -50

e, -5050

13 tháng 5 2016

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)

\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)

\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)

....

\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

 

 

13 tháng 5 2016

\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)

=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)

=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)

=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)

=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)

=\(\frac{5}{2}\cdot\frac{100}{101}\)

\(=\frac{250}{101}\)

9 tháng 1 2022

\(S=1+\dfrac{1}{2}+\dfrac{1}{2^3}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{101}}\)

\(\Rightarrow S-1=\dfrac{1}{2}+\dfrac{1}{2^3}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{101}}\)

\(\Rightarrow\dfrac{1}{4}\left(S-1\right)=\dfrac{1}{2^3}+\dfrac{1}{2^5}+\dfrac{1}{2^7}+...+\dfrac{1}{2^{103}}\)

\(\Rightarrow\dfrac{1}{4}\left(S-1\right)-\left(S-1\right)=\dfrac{1}{2^3}+\dfrac{1}{2^5}+\dfrac{1}{2^7}+...+\dfrac{1}{2^{103}}-\dfrac{1}{2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{101}}\)

\(\Rightarrow\dfrac{3}{4}\left(S-1\right)=\dfrac{1}{2^{103}}\)

\(\Rightarrow S-1=\dfrac{1}{2^{103}}:\dfrac{3}{4}\)

\(\Rightarrow S-1=\dfrac{4}{3.2^{103}}\)

\(\Rightarrow S=\dfrac{4}{3.2^{103}}+1\)

9 tháng 1 2022

S=1+12+123+125+...+12101S=1+12+123+125+...+12101

⇒S−1=12+123+125+...+12101⇒S−1=12+123+125+...+12101

⇒14(S−1)=123+125+127+...+12103⇒14(S−1)=123+125+127+...+12103

⇒14(S−1)−(S−1)=123+125+127+...+12103−12−123−...−12101⇒14(S−1)−(S−1)=123+125+127+...+12103−12−123−...−12101

⇒34(S−1)=12103⇒34(S−1)=12103

⇒S−1=12103:34⇒S−1=12103:34

⇒S−1=43.2103⇒S−1=43.2103

⇒S=43.2103+1

10 tháng 8 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

     \(=1-\frac{1}{100}=\frac{99}{100}\)

5 tháng 1 2016

2S = \(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}\)

\(2S=1-\frac{1}{101}\)

2S + 1/101 = \(1-\frac{1}{101}+\frac{1}{101}=1\)