Tinhs \(\frac{\left(-\frac{5}{7}\right)^n}{\left(-\frac{5}{7}\right)^{n-1}}\) A\(\ge\)1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n\cdot\dfrac{-7}{5}}=1:\dfrac{-7}{5}=-\dfrac{5}{7}\)
b: \(=\dfrac{\dfrac{1}{4}^n}{\left(-\dfrac{1}{2}\right)^n}=\left(-\dfrac{1}{2}\right)^n\)
Ta có:
\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)
\(=1-\frac{2n+1}{\left(n+1\right)^2}\)
Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)
a,<=>\(\frac{\left(2x+1\right)^2}{4}\)+\(\frac{2\left(2x-1\right)^2}{4}\)≥\(\frac{12\left(x+5\right)^2}{4}\)
<=>4x2+4x+1+2(4x2-4x+1)≥12(x2+10x+25)
<=>4x2+4x+1+8x2-8x+2≥12x2+120x+300
<=>4x2+4x+1+8x2-8x+2-12x2-120x-300≥0
<=>-124x-297≥0
<=>124x+297≤0
<=>124x≤-297
<=>x≤\(\frac{-297}{124}\)
b, Tương tự câu a
c, |5−3x|=2+x
TH1: 5-3x=2+x
<=> -3x - x = 2 - 5
<=> -4x = -3
<=> x = 3/4
TH2: 5-3x = -2 - x
<=> -3x + x = -2 - 5
<=> -2x = -7
<=> x = 7/2
\(\frac{\left(\frac{-5}{7}\right)^{n+1}}{\left(\frac{-5}{7}\right)^n}\)
\(=\frac{-5}{7}\)
\(\frac{\left(-\frac{5}{7}\right)^n}{\left(-\frac{5}{7}\right)^{n-1}}=\left(-\frac{5}{7}\right)^{n-\left(n-1\right)}=-\frac{5}{7}\)
A\(\ge\)1 ma