\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{110}\)
=\(\frac{1}{1.2}+\frac{1}{2\cdot3}+\frac{1}{3.4}+......+\frac{1}{10.11}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{10}-\frac{1}{11}\)
=\(1-\frac{1}{11}\)
=\(\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+...+\frac{1}{110}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
Tính tổng
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.........+\frac{1}{110}+\frac{1}{132}\)
=1/1*2+1/2*3+1/3*4+...+1*10*11+1/11*12=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11+1/11-1/12
=1-1/12=11/12.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}+\frac{1}{11\times12}\)
\(=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{11}+\frac{1}{12}\)
\(=1-\frac{1}{12}\)
\(=\frac{11}{12}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+....+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\)\(+\frac{1}{110}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...\) \(+\frac{1}{9\cdot10}\)\(+\frac{1}{10\cdot11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\)\(\frac{1}{5}\)\(+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)\(+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\)
Chỉ cần viết ra là: \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}=1-\frac{1}{11}=\frac{10}{11}\)
Ta có :
\(1-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-...-\frac{1}{110}\)
\(=\)\(1-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(=\)\(1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\)\(1-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\)\(1-\left(1-\frac{1}{11}\right)\)
\(=\)\(1-1+\frac{1}{11}\)
\(=\)\(\frac{1}{11}\)
Chúc bạn học tốt ~
\(1-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{110}\)
\(=1-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=1-\left(1-\frac{1}{11}\right)\)
\(=1-\frac{10}{11}\)
\(=\frac{1}{11}\)
Chúc bạn học tốt !!!
1/2+1/6+1/12+...+1/110
=1/1.2+1/2.3+1/3.4+...+1/10.11
=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11
=1-1/11=10/11
\(\left(\times-\frac{1}{5}\right):\left(\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{110}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(\frac{1}{1\times2}+\cdot\cdot\cdot+\frac{1}{10\times11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(1-\frac{1}{2}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(1-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\frac{10}{11}=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right)=\frac{1}{5}\times\frac{10}{11}\)
\(\Rightarrow\times-\frac{1}{5}=\frac{2}{11}\)
\(\Rightarrow\times=\frac{2}{11}+\frac{1}{5}\)
\(\Rightarrow\times=\frac{21}{55}\)
\(\left(x-\frac{1}{5}\right):\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(1-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\frac{10}{11}=\frac{1}{5}\)
\(\Rightarrow x-\frac{1}{5}=\frac{1}{5}\times\frac{10}{11}\)
\(\Rightarrow x-\frac{1}{5}=\frac{2}{11}\)
\(\Rightarrow x=\frac{2}{11}+\frac{1}{5}\)
\(\Rightarrow x=\frac{21}{55}\)
Vậy \(x=\frac{21}{55}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\)
= \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/10 - 1/11
= 1 - 1/11
= 10/11
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
Tham khảo nhé~