Cho số nguyên tố p.Giả sử x,y là các số tự nhiên khác 0 thỏa mãn điều kiện \(\dfrac{x^2+py^2}{xy}\) là số tự nhiên.Cmr \(\dfrac{x^2+py^2}{xy}=p+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=gcd\left(x;y\right)\Rightarrow x=md;y=nd\) với \(\left(m;n\right)=1;m,n\inℕ^∗\)
Ta có:\(A=\frac{x^2+py^2}{xy}=\frac{m^2d^2+pn^2d^2}{mnd^2}=\frac{m^2+pn^2}{mn}\)
\(\Rightarrow m^2+pn^2⋮mn\)
\(\Rightarrow\hept{\begin{cases}m^2+pn^2⋮m\\m^2+pn^2⋮n\end{cases}}\Rightarrow m^2⋮n\)
Mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m^2+p⋮m\Rightarrow p⋮m\)
Mà p là số nguyên tố nên \(m=1\left(h\right)m=p\)
Với \(m=1\Rightarrow x=y=d\Rightarrow\frac{x^2+py^2}{xy}=1+p\)
Với \(m=p\Rightarrow x=dp;y=d\Rightarrow\frac{x^2+py^2}{xy}=p+1\)
Vậy ta có đpcm
Dân ta phải biết sử ta cái gì không biết thì tra google
Ai đồng ý thì tick mình cái
\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)
\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)
\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)
Đặt (x, y) = d.
Ta có: \(\left\{{}\begin{matrix}x=dx'\\y=dy'\end{matrix}\right.\left(\left(x',y'\right)=1\right)\).
Ta có: \(x^2+py^2⋮xy\Leftrightarrow x'^2+py'^2⋮x'y'\).
Từ đó: \(x'^2⋮y'\Rightarrow y'=1\).
Do đó: \(x'^2+p⋮x'\Leftrightarrow p⋮x'\Leftrightarrow\left[{}\begin{matrix}x'=1\\x'=p\end{matrix}\right.\).
+) Nếu x' = 1 thì x = y. Ta có \(\frac{x^2+py^2}{xy}=p+1\).
+) Nếu x' = p thì x = py. Ta có: \(\frac{x^2+py^2}{xy}=\frac{p^2y^2+py^2}{py^2}=p+1\).
Vậy ta có đpcm.