K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2020

Đặt (x, y) = d.

Ta có: \(\left\{{}\begin{matrix}x=dx'\\y=dy'\end{matrix}\right.\left(\left(x',y'\right)=1\right)\).

Ta có: \(x^2+py^2⋮xy\Leftrightarrow x'^2+py'^2⋮x'y'\).

Từ đó: \(x'^2⋮y'\Rightarrow y'=1\).

Do đó: \(x'^2+p⋮x'\Leftrightarrow p⋮x'\Leftrightarrow\left[{}\begin{matrix}x'=1\\x'=p\end{matrix}\right.\).

+) Nếu x' = 1 thì x = y. Ta có \(\frac{x^2+py^2}{xy}=p+1\).

+) Nếu x' = p thì x = py. Ta có: \(\frac{x^2+py^2}{xy}=\frac{p^2y^2+py^2}{py^2}=p+1\).

Vậy ta có đpcm.

1 tháng 3

 

Đặt x=y=k

x^2+py^2/xy=k^2+py^2/k^2=k^2(p+1)/k^2=p+1

 

7 tháng 5 2020

Gọi \(d=gcd\left(x;y\right)\Rightarrow x=md;y=nd\) với \(\left(m;n\right)=1;m,n\inℕ^∗\)

Ta có:\(A=\frac{x^2+py^2}{xy}=\frac{m^2d^2+pn^2d^2}{mnd^2}=\frac{m^2+pn^2}{mn}\)

\(\Rightarrow m^2+pn^2⋮mn\)

\(\Rightarrow\hept{\begin{cases}m^2+pn^2⋮m\\m^2+pn^2⋮n\end{cases}}\Rightarrow m^2⋮n\)

Mà \(\left(m;n\right)=1\Rightarrow n=1\Rightarrow m^2+p⋮m\Rightarrow p⋮m\)

Mà p là số nguyên tố nên \(m=1\left(h\right)m=p\)

Với \(m=1\Rightarrow x=y=d\Rightarrow\frac{x^2+py^2}{xy}=1+p\)

Với \(m=p\Rightarrow x=dp;y=d\Rightarrow\frac{x^2+py^2}{xy}=p+1\)

Vậy ta có đpcm

25 tháng 12 2015

Dân ta phải biết sử ta  cái gì không biết thì tra google 

Ai đồng ý thì tick mình cái

23 tháng 4 2016

Dân ta phải biết sử ta cái gì không biết thì tra google

3 tháng 1 2016

2.  (x+10).(y+2)=1

tự tính

NV
9 tháng 4 2021

\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)

\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)

\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)