Cho tam giác ABC có 3 góc nhọn, 3 đường cao AD, BE, CF cắt nhau tại H. Cho BD=2cm, DC=3cm, Sabc=30cm2. Tính Shbc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10:
a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔABE\(\sim\)ΔCBD(g-g)
b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có
\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)
Do đó: ΔHDA\(\sim\)ΔHEC(g-g)
Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)
hay \(HD\cdot HC=HE\cdot HA\)
Bài 11:
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE\(\sim\)ΔACF(g-g)
b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
hay \(HE\cdot HB=HF\cdot HC\)
c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: AE/AF=AB/AC
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ABC
c: ΔAEF đồng dạng với ΔABC
=>\(\dfrac{S_{AEF}}{S_{ABC}}=\dfrac{1}{4}\)
=>\(S_{ABC}=4\cdot S_{AEF}\)
Xét \(\Delta AEC\&\Delta ADB\\ \) có:
\(\widehat{A}=\widehat{A}\\ \widehat{E}=\widehat{D}=90^o\\ \Rightarrow\Delta AEC\sim\Delta ADB\left(đpcm\right)\)
b) vì\(\Delta AEC\sim\Delta ADB\Leftrightarrow\dfrac{AB}{AE}=\dfrac{AC}{AD}\Leftrightarrow\dfrac{3}{AE}=\dfrac{5}{2}\Rightarrow AE=\dfrac{3\cdot2}{5}=1.2cm\)
a) Xét ∆ADB và ∆ACE có:
∠ADB = ∠ACE = 90⁰
∠A chung
⇒ ∆ADB ∽ ∆ACE (g-g)
b) Do ∆ADB ∽ ∆ACE (cmt)
⇒ AD/AC = AB/AE
⇒ AE = AB.AC/AD
= 2.3/5
= 1,2 (cm)
tự vẽ hình nha bạn
đầu tiên, c m tam giác AEF đồng dạng với tam giác ABC (c.g.c)
suy ra góc AEF=gócABC(1)
sau đó,cm tam giác BEC đồng dạng với tam giác ADC(c.g.c)
suy ra góc ABC=GÓC DEC(2)
TỪ (1);(2) SUY ra góc DEC=góc AEF
MÀ góc AEF=90-góc FEB
góc DEC=90-góc BED
SUY RA FEB=BED
suy ra EB là phân giác FED
HÃY KẾT BẠN VỚI MINK NHÉ
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
Ta có: S \(\Delta\)ABC =\(\frac{AD\cdot BC}{2}\)
Hay 30 =\(\frac{AD\cdot5}{2}\)
=> AD =12 (cm)
Mặt khác: \(\widehat{HBD}\)+\(\widehat{BHD}\)=90 (\(\Delta\)BHD vuông tại D)
\(\widehat{DAC}\)+\(\widehat{AHE}\)=90 (\(\Delta\)AHE vuông tại E)
Mà: \(\widehat{BHD}\)=\(\widehat{AHE}\)( 2 góc đối đỉnh )
=> \(\widehat{HBD}\)=\(\widehat{DAC}\)
Xét \(\Delta\)BHD và \(\Delta\)ADC có:
\(\widehat{BDH}\)= \(\widehat{ADC}\) ( = 90*)
\(\widehat{HBD}\)= \(\widehat{DAC}\)( cmt )
=> \(\Delta BHD\)đồng dạng với \(\Delta ACD\)( g-g )
=> \(\frac{BD}{AD}=\frac{HD}{CD}\)
=> BD.CD = AD.HD
=> 6 = 12.HD
=> HD = 1/2 (cm)
Vậy S\(\Delta BHC\)=\(\frac{BC\cdot HD}{2}\)=\(\frac{5\cdot0,5}{2}\)=1,25 (cm2)