K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Ta có:

\(a\left(a+b\right)\left(a+c\right)=b\left(b+c\right)\left(b+a\right)\)

\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)-b\left(b+c\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-b^2+ac-bc\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a+b+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a-b=0\\a+b+c=0\end{matrix}\right.\)

Vì \(a\ne\pm b\Rightarrow a+b+c=0\) (đpcm)

1 tháng 8 2018

\(a\ne\pm b\)   =>  \(a\pm b\ne0\)

Như vậy:   \(a\left(a+b\right)\left(b+c\right)=b\left(b+c\right)\left(b+a\right)\)

<=>  \(a\left(a+b\right)=b\left(b+c\right)\)

<=>  \(a^2+ab-b^2-bc=0\)

<=>  \(\left(a-b\right)\left(a+b+c\right)=0\)

<=>  \(a+b+c=0\)  đpcm

1 tháng 8 2018

a(a+b)(a+c)=b(b+c)(b+a)\(\Leftrightarrow\)a(a+c)=b(b+c)   \(\Leftrightarrow\)   a(a+c)-b (b=c)    =0    \(\Leftrightarrow\)   a2-b2+ac-bc=0      \(\Leftrightarrow\) (  a  - b) (  a + b)+c ( a-b )=0   \(\Leftrightarrow\)    ( a-b)(  a+b+c)=0     \(\Leftrightarrow\) a+b+c=0(do a\(\ne\) \(\mp\)b)

thiếu đề 

phải không

sửa lại mới làm được

13 tháng 6 2019

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) ms đúng đề nhé!

Câu hỏi của Học Online 24h - Toán lớp 7 - Học toán với OnlineMath

2 tháng 6 2018

\(a\left(a+b\right)\left(a+c\right)=b\left(b+c\right)\left(b+a\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2+ac\right)-\left(a+b\right)\left(b^2+bc\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-b^2+ac-bc\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)\left(a-b\right)+c\left(a-b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a+b+c\right)=0\)

\(\Leftrightarrow a+b=0\)hoặc \(a-b=0\)hoặc \(a+b+c=0\)

\(\Leftrightarrow a=b\)(Không thỏa điều kiện) hoặc a=-b (Không thỏa điều kiện) hoặc a+b+c=0

<=> a+b+c=0 (đpcm)

23 tháng 3 2023

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

22 tháng 8 2021

a) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) và \(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

 

22 tháng 8 2021

b) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b}{b}=\dfrac{b\left(k-1\right)}{b}=k-1\\\dfrac{c-d}{d}=\dfrac{d\left(k-1\right)}{d}=k-1\end{matrix}\right.\)\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

c) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)

d) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2019

Lời giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=t(t\neq \pm 1)\) \(\Rightarrow a=bt;c=dt\)

Khi đó:

\(\frac{a+b}{a-b}=\frac{bt+b}{bt-b}=\frac{b(t+1)}{b(t-1)}=\frac{t+1}{t-1}\)

\(\frac{c+d}{c-d}=\frac{dt+d}{dt-d}=\frac{d(t+1)}{d(t-1)}=\frac{t+1}{t-1}\)

\(\Rightarrow \frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)

12 tháng 7 2019

Cách khác:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

1 tháng 1 2020

Chứng minh : a3 + b3 + c3 = 3abc \(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(tm\right)\\a=b=c\left(loai\right)\end{cases}}\)

Rút gọn P

\(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)}{abc}\)

Xét : ab(a-b) + bc(b-c) + ac(c-a) = ab[-(b-c)-(c-a)] + bc(b-c) + ac(c-a)

= (b-c)(bc-ab) + (c-a)(ac-ab) = b(b-c)(c-a) + a(c-a)(c-b) = (c-a)(c-b)(a-b)

\(\Rightarrow P=\frac{\left(c-a\right)\left(c-b\right)\left(a-b\right)}{abc}\)

Rút gọn Q

Đặt a - b = z ; b-c = x ; c - a = y

\(\Rightarrow\)x- y = a + b - 2c = -c - 2c = -3c              ( do a + b + c = 0 )

y - z = -3a ; z - x = -3b

\(\Rightarrow\)\(-3Q=\frac{\left(y-z\right)}{x}+\frac{\left(z-x\right)}{y}+\frac{\left(x-y\right)}{z}\)

Làm tương tự như rút gọn P, ta có : 

\(-3Q=\frac{\left(x-y\right)\left(z-y\right)\left(z-x\right)}{xyz}=\frac{-\left(-3a\right)\left(-3b\right)\left(-3c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{27abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-27abc}{\left(a-b\right)\left(c-b\right)\left(c-a\right)}\)

\(\Rightarrow Q=\frac{9abc}{\left(a-b\right)\left(c-b\right)\left(c-a\right)}\)

\(\Rightarrow PQ=9\)