12=3*4
1122=33*34
111222=333*334
chứng minh rằng: 111......1222......2(có 100 chữ số1 và 100 chữ số 2)
là tích của hai số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 111...1=a ( n chữ số 1 )
=>10n=9a+1
Ta có
111...1222...2=(111...1).10n+222...2
=a(9a+1)+2a
=9a2+a+2a
=9a2+3a
=3a(3a+1)
=> DPCM
Đặt 111...1=a ( n chữ số 1 )
=>10n=9a+1
Ta có
111...1222...2=(111...1).10n+222...2
=a(9a+1)+2a
=9a2+a+2a
=9a2+3a
=3a(3a+1)
=> DPCM
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
Gọi 11...1(2012 c/s 1) là x.
Ta có:11...122...2
=11...100...0+22...2
=11...1.100...0+22...2
=11....1.(99...9+1)+111...1.2
=x(9x+1)+2x
=9x2+x+2x
=9x2+3x
=(3x)2+3x
=3x.3x+3x
=3x.(3x+1)
=>11...122...2 là tích của hai số tự nhiên liên tiếp.
Vậy 11...122...2 là tích của hai số tự nhiên liên tiếp.
11...122...2 ( n số 1; n số 2)
=111....1(n chữ số 1) 00...00(n chữ số 0) + 22...2(n chữ số 2)
=111...1(n chữ số 1) . 100...0(n chữ số 0) +111...1(n chữ số 1) . 2
=11....1(n chữ số 1) (1000....0(n chữ số 0) + 2)
=111....1(n chữ số 1) . 100...02(n-1 chữ số 0)
=11...1 . 3 ( n chữ số 1) . 33...34(n-1 chữ số 3)
=333...3( n chữ số 3) . 33...34(n-1 chữ số 3)
Vậy ..........
Ta có : \(A=11...122...2=11...100...0+22...2\) ( 100 c/s 1 ; 100 c/s 0 ; 100 c/s 2 )
\(=11...1.\left(100...0+2\right)\) ( 100 c/s 1 ; 100 c/s 0 )
\(=11...1.\left(3.33...34\right)\) ( 100 c/s 1 ; 99 c/s 3 )
\(=33...3.33...34\) ( 100 c/s 3 ; 99 c/s 3 )
Vậy A là tích của hai STN liên tiếp
Có 111...11222...22=111..11.10100+2.111....111
Bây giờ ta có chung thừa số 111....11 nên ta đặt chúng ra làm thừa số chung và bằng
111.....11.[10100+2]=111....11.[100...00+2]=111...11.[100..02]=111....11.[3.33..334]=333...33.333...34
Vậy 111...11222...22 là tích của 2 stn liên tiếp
111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)
= 111...1.(10n + 2) (n chữ số 1)
Nhận xét: 10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)
hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm
Tớ chi chứng minh nó là hợp số đc thôi