Hép mi : CM các đẳng thức
a. (2+1).(2^2+1).(2^4+1).(2^8+1).(2^16+1) = 2^32 - 1
b. 100^2 + 103^2 + 105^2 + 94^2 = 101^2 + 98^2 + 96^2 + 107^2
Bài 2 : Tính hợp lí
b. B=263^2 + 74 . 263 + 37^2
c.C=(50^2+48^2+46^2+....+2^2)-(49^2+47^2+45^2+...+1^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng hàng đẳng thức A^2-B^2=(A-B)(A+B) nhé còn phần b chuyển vế sang rồi dùng HĐT là được
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)
\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)+\left(105-107^2\right)+\left(94^2-96^2\right)=0\)
\(\Leftrightarrow2\left(100+98+103+101-105-107-94-96\right)=0\)
\(\Leftrightarrow2\times0=0\)(ĐPCM)
dùng hằng đẳng thức A^2 - B^2 = (A - B)(A + B) nhé phần b chuyển vế sang rồi dùng hđt là Okay
a) Đặt A = (2 + 1)(22 + 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = ( 22 - 1 ) (22 + 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = (24 - 1)(24 + 1 )(28 +1)( 216 +1 )
=> A = (28 - 1)(28 +1)( 216 +1 )
=> A= (216 -1 ) (216 + 1) = 232 - 1 => đpcm
b) 1002 + 1032 + 1052 + 942 = 1012 + 982 + 962 + 1072
<=> \(\left(100^2-98^2\right)+\left(103^2-101^2\right)+\left(105^2-107^2\right)+\left(94^2-96^2\right)\) = 0
<=> \(\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)\)+ (105 -107)(105+107) + (94 - 96)(96 + 94) = 0
<=> \(2.198+2.204-2.212-2.190\) = 0
<=> \(2\left(198+204-212-190\right)=0\)
<=> \(\left(198-190\right)+\left(204-212\right)=0\)
<=> \(-8+8=0\) (luôn đúng) => đpcm
P/s: đây ko phải bài lớp 10 đâu!
\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
b/ \(100^2+\left(100+3\right)^2+\left(100+5\right)^2+\left(100-6\right)^2\)
\(=100^2+100^2+100^2+100^2+4.100+9+25+36\)
\(=100^2+2.100+1+100^2-4.100+4+100^2-8.100+16+100^2+14.100+49\)
\(=\left(100+1\right)^2+\left(100-2\right)^2+\left(100-4\right)^2+\left(100+7\right)^2\)
1 \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(Vì a+b+c=0)
b)\(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)
Theo câu a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\) nên ta suy ra được điều cần phải chứng minh là \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
2.
a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow A=1\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Sử dụng hằng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)ta được
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(...\)
\(A=2^{32}-1\left(ĐPCM\right)\)
b) Ta có
\(\left(100^2-101^2\right)+\left(103^2-98^2\right)+\left(105^2-96^2\right)+\left(94^2-107^2\right)\)
=\(201\left(-1+5+9-13\right)=0\)
Suy ra ĐPCM
3
a) Phân tích hết ra rồi chuyển vế làm như bài toán tìm x thông thường
b) Sử dụng bất đẳng thức a^2-b^2= (a-b)(a+b)
c) Sử dụng bất đẳng thức (a-b)(a+b)=a^2-b^2 do ta dễ thấy các biểu thức liên hợp
Không hiểu chỗ nào thì có thể nhắn tin sang để mk giải thích
Xét hiệu :
\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)
\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)
\(=\left(100^2-98^2\right)+\left(103^2+101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)
\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)-\left(96-94\right)\left(96+94\right)\)\(-\left(107-105\right)\left(107+105\right)\)
\(=2.198+2.204-2.212-2.190\)
\(=2.\left(198+204-212-190\right)\)
\(=2.0\)
\(=0\)
VẬY dpcm
Ta có:
1002+1032+1052+942=1012+982+962+1072
=>1002+1032+1052+942-(1012+982+962+1072)=0
=>1002+1032+1052+942-1012-982-962-1072=0
=>(1002-982) + (1032-1012) + (1052-1072) + (942-962) = 0
=>(100-98)(100+98) + (103-101)(103+101) + (105-107)(105+107) + (94-96)(94+96) = 0
=>2.(100+98) + 2.(103+101) - 2.(105+107) - 2.(94+96) = 0
=>2.[(100+98)+(103+101)-(105+107)-(94+96)] = 0
=>2.(198+204-212-190)=0
=>2.0=0
Chứng tỏ 1002+1032+1052+942=1012+982+962+1072
\(a,\frac{63^2-47^2}{215^2-105^2}=\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}=\frac{16.110}{110.320}=\frac{1}{20}\)
\(b,\frac{437^2-363^2}{537^2-463^2}=\frac{\left(437-363\right)\left(437+363\right)}{\left(537-463\right)\left(537+463\right)}=\frac{74.800}{74.1000}=0,8\)
\(c,2^{32}-\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-2^{32}+1=1\)
\(d,100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)
\(=\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)
\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)-\left(107-105\right)\left(107+105\right)-\left(96-94\right)\left(96+94\right)\)
\(=2.198+2.204-2.212-2.190\)
\(=2\left(198+204-212-190\right)=2.0=0\)
a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)
Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)
Bài 1:
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)
\(\Leftrightarrow100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2=0\)
\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)=0\)
\(\Leftrightarrow2.198+2.204-2.212-2.190=0\)
\(\Leftrightarrow2\left(198+204-212-190\right)=0\)
\(\Leftrightarrow2.0=0\) (đúng)
Bài 2:
a) \(263^2+74.263+37^2\)
\(=263^2+2.37.263+37^2\)
\(=\left(263+37\right)^2\)
b) \(\left(50^2+48^2+46^2+...+2^2\right)-\left(49^2+47^2+45^2+...+1^2\right)\)
\(=50^2+48^2+46^2+...+2^2-49^2-47^2-45^2-...-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+\left(46^2-45^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50+49\right)+\left(48+47\right)+\left(46+45\right)+...+\left(2+1\right)\)
\(=50+49+48+47+46+45+...+2+1\)
\(=\dfrac{\left(50+1\right).\left(50-1+1\right)}{2}=1275\)
Kết luận ...