giá trị GTLN của biểu thức A = \(\sqrt{3x-5}+\sqrt{7-3x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DKXD :\(\frac{5}{3}\)\(\le\)\(x\le\)\(\frac{7}{3}\)
áp dụng bdt phụ : ( a + b )\(^2\)\(\ge\)2( a\(^2\) + b\(^2\)) ta duoc :
( \(\sqrt{3x-5}\)+ \(\sqrt{7-3x}\))\(^2\)\(\le\)2(\(3x-5+7-3x\)) = 4
\(\Rightarrow\)0\(\le\)\(\sqrt{3x-5}\)+\(\sqrt{7-3x}\)\(\le\)2
dau '=' xay ra \(\)\(\Leftrightarrow\)\(3x-5=7-3x\)
\(\Leftrightarrow\)\(x=2\)(thỏa mãn DKXD )
Vay GTLN cua A= 2 \(\Leftrightarrow\)\(x=2\)
\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)
\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)
\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)
ap dung bdt cauchy-schwarz ta co
\(A=\sqrt{3x-5}+\sqrt{7-3x}\) \(\le\sqrt{\left(1^2+1^2\right)\left(3x-5+7-3x\right)}=\sqrt{4}=2\)
dau = xay ra khi \(\frac{1}{3x-5}=\frac{1}{7-3x}\Leftrightarrow x=2\)
bạn tham khảo nhé
áp dụng BĐt cô si ta có
\(\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1}{2}+\frac{7-3x+1}{2}=2\)
Vậy A max=2
Đã từng lm qua nhưng ko chắc á
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(ĐKXD\): \(\frac{5}{3}\le x\le\frac{7}{3}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
Áp dụng BĐT Cô - si Ta có : \(A^2\le2+\left(3x-5+7-3x\right)=4\)
Dấu ''='' xãy ra \(\Leftrightarrow3x-5=7-3x\Leftrightarrow x=2\)
Vậy Max A2=4 => Max A=2 khi x=2
Với các số thực không âm a; b ta luôn có BĐT sau:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)
Áp dụng:
a.
\(A\ge\sqrt{x-4+5-x}=1\)
\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)
\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)
b.
\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)
\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)
\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)
\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)
a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)
=>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)
=>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)
=>A\(\ge\)1
Dấu '=' xảy ra <=> x=4 hoặc x=5
Vậy,Min A=1 <=>x=4 hoặc x=5
Còn câu b tương tự nhé
\(x=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\Rightarrow x^3=5\sqrt{2}+7-\left(5\sqrt{2}-7\right)-3\sqrt[3]{\left(5\sqrt{2}\right)^2-7^2}.x\)
\(=14-3.\sqrt[3]{50-49}.x=14-3x\)
\(\Rightarrow x^3=14-3x\Rightarrow x^3+3x=14\)
Đk: x = \(5+2\sqrt{7}\)> 5
Đặt A = \(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)
A2 = \(\left(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\right)^2\)
A2 = \(3x+\sqrt{6x-1}+3x-\sqrt{6x-1}-2\sqrt{\left(3x+\sqrt{6x-1}\right)\left(3x-\sqrt{6x-1}\right)}\)
A2 = \(6x-2\sqrt{9x^2-6x+1}\)
A2 = \(6x-2\sqrt{\left(3x-1\right)^2}\) (vì x > \(\frac{1}{3}\))
A2 = \(6x-2\left(3x-1\right)\)
A2 = \(6x-6x+2\)
A2 = 2
=> A = \(\sqrt{2}\)
Vậy ....
Đặt: \(A=\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)
=> \(A^2=3x+\sqrt{6x-1}+3x-\sqrt{6x-1}-2\sqrt{\left(3x+\sqrt{6x-1}\right)\left(3x-\sqrt{6x-1}\right)}\)
=> \(A^2=6x-2\sqrt{9x^2-6x+1}\)
=> \(A^2=6x-2\sqrt{\left(3x-1\right)^2}\)
Mà: \(x=5+2\sqrt{7}\Rightarrow x>\frac{1}{3}\Rightarrow3x>1\Rightarrow3x-1>0\)
=> \(A^2=6x-2\left(3x-1\right)\)
=> \(A^2=6x-6x+2=2\)
Mà: \(\sqrt{3x+\sqrt{6x-1}}>\sqrt{3x-\sqrt{6x-1}}\Rightarrow A>0\)
=> \(A=\sqrt{2}\)
VẬY \(A=\sqrt{2}\)
Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le\left(1^2+1^2\right)\left(3x-5+7-3x\right)\left(\dfrac{5}{3}\le x\le\dfrac{7}{3}\right)\)
\(\Leftrightarrow\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le4\)
\(\Leftrightarrow\sqrt{3x-5}+\sqrt{7-3x}\le2\)
\(\Rightarrow A_{Max}=2."="\Leftrightarrow x=2\left(TM\right)\)