K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

+) A nhỏ nhất khi |5-x| nhỏ nhất.  vì |5-x| là một số luôn lớn hơn hoặc bằng 0 nhỏ nhất là = 0

Vậy A nhỏ nhất = 2/3 khi và chỉ khi 5-x = 0 => x = 5

+)B nhỏ nhất khi (x-2)^2 là nhỏ nhất.  (x-2)^2 luôn lớn hơn hoặc bằng 0  nhỏ nhất là bằng 0

Vậy B nhỏ nhất = 1 khi và chỉ khi x-2 = 0 => x = 2

+) C lớn nhất khi |x - 4| nhỏ nhất. 

|x - 4| nhỏ nhất = 0

Vậy C lớn nhất = 0,5 - 0 = 0,5 khi và chỉ khi x- 4 = 0 => x = 4

16 tháng 5 2016

Ta có : \(f'\left(x\right)=2x+\frac{2}{1-2x}=\frac{-4x^2+2x+2}{1-2x}=0\Leftrightarrow-4x^2+2x+2=0\)

                                                                   \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\in\left[-2;0\right]\\x=1\notin\left[-2;0\right]\end{array}\right.\)

Mà :

    \(\begin{cases}f\left(-2\right)=4-\ln5;x=-2\\f\left(-\frac{1}{2}\right)=\frac{1}{4}-\ln2=\frac{1-4\ln2}{4};x=-\frac{1}{2}\\\end{cases}\)

16 tháng 5 2016
 \(f\left(x\right)=\frac{\ln^2x}{x}\) trên đoạn \(\left[1;e^3\right]\) Ta có : \(f'\left(x\right)=\frac{2\ln x.\frac{1}{x}x-\ln^2x}{x^2}=\frac{2\ln x-\ln^2x}{x^2}=0\Leftrightarrow2\ln x-\ln^2x=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\ln x=0\\\ln x=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=e^2\end{array}\right.\)Mà :\(\begin{cases}f\left(1\right)=0\\f\left(e^2\right)=\frac{4}{e^2}\\f\left(e^3\right)=\frac{9}{e^3}\end{cases}\)\(\Leftrightarrow\begin{cases}Max_{x\in\left[1;e^3\right]}f\left(x\right)=\frac{4}{e^2};x=e^2\\Min_{x\in\left[1;e^3\right]}f\left(x\right)=0;x=1\end{cases}\)

a: ĐKXĐ: \(x\notin\left\{\dfrac{5}{2}\right\}\)

\(\log_32x-5=3\)

=>\(log_3\left(2x-5\right)=log_327\)

=>2x-5=27

=>2x=32

=>x=16(nhận)

b: ĐKXĐ: x<>0

\(\log_4x^2=2\)

=>\(log_4x^2=log_416\)

=>\(x^2=16\)

=>\(\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

c: ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{5}{2}\right\}\)

\(\log_7\left(3x-1\right)=\log_7\left(2x+5\right)\)

=>3x-1=2x+5

=>x=6(nhận)

d: ĐKXĐ: \(x\notin\left\{1;-1;\dfrac{-1+\sqrt{13}}{4};\dfrac{-1-\sqrt{13}}{4}\right\}\)

\(ln\left(4x^2+2x-3\right)=ln\left(3x^2-3\right)\)

=>\(4x^2+2x-3=3x^2-3\)

=>\(x^2+2x=0\)

=>x(x+2)=0

=>\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-2\left(nhận\right)\end{matrix}\right.\)

e: ĐKXĐ: \(x\notin\left\{-\dfrac{3}{2};\dfrac{1}{3}\right\}\)

\(log\left(2x+3\right)=log\left(1-3x\right)\)

=>2x+3=1-3x

=>5x=-2

=>\(x=-\dfrac{2}{5}\left(nhận\right)\)