Tìm x∈Z biết
\(\dfrac{x+4}{2008}+\dfrac{x+3}{2007}=\dfrac{x+2}{2009}+\dfrac{x+1}{2010}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(x+3\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2010}+\dfrac{1}{2009}\right)=0\\ \Rightarrow x=-3\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2010}+\dfrac{1}{2009}\ne0\right)\)
\(\dfrac{x+3}{2007}-\dfrac{x+3}{2008}=\dfrac{x+3}{2010}-\dfrac{x+3}{2009}\)
\(\Leftrightarrow x+3=0\)
hay x=-3
\(\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}+\dfrac{x+5}{2007}+\dfrac{x+2007}{5}=-5\)
Ta có:
\(\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}+1+\dfrac{x+5}{2007}+1+\dfrac{x+2007}{5}+1=0\)
\(=\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}+\dfrac{x+2012}{2007}+\dfrac{x+2012}{5}=0\)
\(=\left(x+2012\right)\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{5}\right)=0\)
Mà \(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{5}\ne0\)
\(\Rightarrow x+2012=0\Rightarrow x=-2012\)
Vậy \(x=-2012\)
Chúc bạn học tốt!
\(\Leftrightarrow\dfrac{x+1}{2010}+1+\dfrac{x+2}{2009}+1+...+\dfrac{x+2009}{2}+1+\dfrac{x+2010}{1}+1=0\)
=>x+2011=0
hay x=-2011
\(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)
=>\(\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>\(\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)
=>x-2010=0
=>x=2010
(x - 1)/2009 + (x - 2)/2008 = (x - 3)/2007 + (x - 4)/2006
(x - 1)/2009 - 1 + (x - 2)/2008 - 1 = (x - 3)/2007 - 1 + (x - 4)/2006 - 1
(x - 2010)/2009 + (x - 2010)/2008 = (x - 2010)/2007 + (x - 2010)/2006
(x - 2010)/2009 + (x - 2010)/2008 - (x - 2010)/2007 - (x - 2010)/2006 = 0
(x - 2010).(1/2009 + 1/2008 - 1/2007 - 1/2006) = 0
x - 2010 = 0
x = 2010
\(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
Giải:
Ta có:
\(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)
\(\Leftrightarrow\dfrac{x-1}{2009}+\dfrac{x-2}{2008}-2=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}-2\)
\(\Leftrightarrow\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)
\(\Leftrightarrow\dfrac{x-1-2009}{2009}+\dfrac{x-2-2008}{2008}=\dfrac{x-3-2007}{2007}+\dfrac{x-4-2006}{2006}\)
\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}=\dfrac{x-2010}{2007}+\dfrac{x-2010}{2006}\)
\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\)
Vì \(\Leftrightarrow\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\)
Nên \(x-2010=0\)
\(\Rightarrow x=2010\)
Vậy \(x=2010\).
Chúc bạn học tốt!
\(\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\) | ||||
\(\Rightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}=\dfrac{x-2010}{2007}+\dfrac{x-2010}{2006}\) | ||||
chuyển vế ta có:
|
Lời giải:
a)
PT \(\Leftrightarrow \frac{(x+2)^3}{8}-\frac{x^3+8}{2}=0\)
\(\Leftrightarrow (x+2)^3-4(x^3+8)=0\)
\(\Leftrightarrow (x+2)^3-4(x+2)(x^2-2x+4)=0\)
\(\Leftrightarrow (x+2)[(x+2)^2-4(x^2-2x+4)]=0\)
\(\Leftrightarrow (x+2)(-3x^2+12x-12)=0\)
\(\Leftrightarrow (x+2)(x^2-4x+4)=0\Leftrightarrow (x+2)(x-2)^2=0\Rightarrow x=\pm 2\)
b) Bạn kiểm tra lại xem có sai đề không?
Giải:
\(\dfrac{x+4}{2008}+\dfrac{x+3}{2009}=\dfrac{x+2}{2010}+\dfrac{x+1}{2011}\)
\(\Leftrightarrow\dfrac{x+4}{2008}+\dfrac{x+3}{2009}+2=\dfrac{x+2}{2010}+\dfrac{x+1}{2011}+2\)
\(\Leftrightarrow\dfrac{x+4}{2008}+1+\dfrac{x+3}{2009}+1=\dfrac{x+2}{2010}+1+\dfrac{x+1}{2011}+1\)
\(\Leftrightarrow\dfrac{x+4+2008}{2008}+\dfrac{x+3+2009}{2009}=\dfrac{x+2+2010}{2010}+\dfrac{x+1+2011}{2011}\)
\(\Leftrightarrow\dfrac{x+2012}{2008}+\dfrac{x+2012}{2009}=\dfrac{x+2012}{2010}+\dfrac{x+2012}{2011}\)
\(\Leftrightarrow\dfrac{x+2012}{2008}+\dfrac{x+2012}{2009}-\dfrac{x+2012}{2010}-\dfrac{x+2012}{2011}=0\)
\(\Leftrightarrow\left(x+2012\right)\left(\dfrac{1}{2008}+\dfrac{1}{2009}-\dfrac{1}{2010}-\dfrac{1}{2011}\right)=0\)
Vì \(\dfrac{1}{2008}+\dfrac{1}{2009}-\dfrac{1}{2010}-\dfrac{1}{2011}\ne0\)
Nên \(x+2012=0\)
\(\Leftrightarrow x=0-2012\)
\(\Leftrightarrow x=-2012\)
Vậy \(x=-2012\).
Chúc bạn học tốt!
\(\dfrac{x+4}{2008}+\dfrac{x+3}{2009}=\dfrac{x+2}{2010}+\dfrac{x+1}{2011}\)
\(\Rightarrow\dfrac{x+4}{2008}+1+\dfrac{x+3}{2009}+1=\dfrac{x+2}{2010}+1+\dfrac{x+1}{2011}+1\)
\(\Rightarrow\dfrac{x+2012}{2008}+\dfrac{x+2012}{2009}=\dfrac{x+2012}{2010}+\dfrac{x+2012}{2011}\)
\(\Rightarrow\dfrac{x+2012}{2008}+\dfrac{x+2012}{2009}-\dfrac{x+2012}{2010}-\dfrac{x+2012}{2011}=0\)
\(\Rightarrow\left(x+2012\right)\left(\dfrac{1}{2008}+\dfrac{1}{2009}-\dfrac{1}{2010}-\dfrac{1}{2011}\right)=0\)
Vì \(\dfrac{1}{2008}+\dfrac{1}{2009}-\dfrac{1}{2010}-\dfrac{1}{2011}\ne0\)
Nên:
\(x+2012=0\Rightarrow x=-2012\)
`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`
`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`
`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`
`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)
`<=>x=2014`
Vậy `S={2014}`.
Tag thầy Lâm không :)???