cho A=x-3/x+1
a)tìm x để A=1/5
b) tìm x nguyên để A thuộc nguyên
c) tìm x nguyê để a đạt GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
a: \(A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}=\dfrac{2x-3\sqrt{x}+1}{x-1}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b: Để A nguyên thì \(2\sqrt{x}+2-3⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;3\right\}\)
=>x=0 hoặc x=4
c: Để A<1 thì A-1<0
=>\(\dfrac{2\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
=>căn x-2<0
=>0<=x<4
a: \(A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}=\dfrac{2x-3\sqrt{x}+1}{x-1}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b: Để A nguyên thì \(2\sqrt{x}+2-3⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;3\right\}\)
=>x=0 hoặc x=4
c: Để A<1 thì A-1<0
=>\(\dfrac{2\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
=>căn x-2<0
=>0<=x<4
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\left(\dfrac{1}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}}\)
\(=\left(\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)
\(=\dfrac{1+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\inƯ\left(2\right)\)
=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)
=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)
=>\(x\in\left\{9;1;16;0\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{9;16\right\}\)
c: A<0
=>\(\dfrac{\sqrt{x}}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
Kết hợp ĐKXĐ, ta được: 0<x<4 và x<>1
\(a,A=\dfrac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}\\ A=\dfrac{7x+35}{\left(x-1\right)\left(x+5\right)}=\dfrac{7\left(x+5\right)}{\left(x-1\right)\left(x+5\right)}=\dfrac{7}{x-1}\\ b,A\in Z\\ \Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\left(tm\right)\\ b,A< 0\Leftrightarrow x-1< 0\left(7>0\right)\\ \Leftrightarrow x< 1;x\ne-5\\ c,\left|A\right|=3\Leftrightarrow\dfrac{7}{\left|x-1\right|}=3\Leftrightarrow\left|x-1\right|=\dfrac{7}{3}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}+1=\dfrac{10}{3}\left(tm\right)\\x=-\dfrac{7}{3}+1=-\dfrac{4}{3}\left(tm\right)\end{matrix}\right.\)
\(A=\frac{x-3}{x+1}\)
a,
\(A=\frac{x-3}{x+1}=\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\cdot5=1\cdot\left(x+1\right)\)
\(\Leftrightarrow5x-15=x+1\)
\(\Leftrightarrow5x-x=1+15\)
\(\Leftrightarrow4x=16\)
\(\Leftrightarrow x=4\)
vậy A = 1/5 khi x = 4
\(b,A=\frac{x-3}{x+1}\inℤ\Leftrightarrow x-3⋮x+1\)
\(\Rightarrow x+1-4⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow4⋮x+1\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1;-5;3\right\}\)
vậy A nguyên khi x = -2; 0; -3; 1; -5; 3
\(c,A=\frac{x-3}{x+1}=\frac{x+1-4}{x+1}=1-\frac{4}{x+1}\)
để A đạt GTLN thì \(\frac{4}{x+1}\) nhỏ nhất
=> x + 1 lớn nhất
=> A không có GTLN