tìm x,y thỏa mãn
a.\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-1/6+1/6-1/11+...+1/5x+1-1/5x+6=2005/2006
1-1/5x+6=1-1/2006
5x+6=2006
5x=2000
x=400
\(1-\frac{1}{5x+6}=\frac{2005}{2006}\Leftrightarrow5x+6=2006\Leftrightarrow x=400\)
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức trên, ta có:
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\Rightarrow\)\(\frac{1}{5x+6}=1-\frac{2005}{2006}=\frac{1}{2006}\)
\(\Rightarrow\)\(5x+6=2006\Rightarrow x=400\)
chắc chắn, ủng hộ mink nha
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2005}{2006}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(1-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\frac{1}{5x+6}=1-\frac{2005}{2006}\)
\(\frac{1}{5x+6}=\frac{1}{2006}\)
\(\Rightarrow5x+6=2006\)
\(5x=2006-6\)
\(5x=2000\)
\(x=2000:5\)
\(x=400\)
Ta có :
\(\frac{5}{1.6}+\frac{5}{6.11}+................+\frac{5}{\left(5.x+1\right).\left(5.x+6\right)}=\)\(\frac{50}{41}\)
=> \(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...............+\frac{1}{5.x+1}-\frac{1}{5.x+6}\) = \(\frac{50}{41}\)
=> \(1-\frac{1}{5.x+6}=\frac{50}{41}\)
=> \(\frac{1}{5.x+6}=\frac{-9}{41}\)................ mình ko tìm ra vì p/s kia ko có tử là 1
bạn xem lại đề bài giúp mình nha
tung từng vế một thôi
bạn nhác quá éo chịu suy nghĩ
bài này dễ vl
Bài 1:
a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\frac{1}{5x+6}=\frac{1}{2011}\)
=> 5x + 6 = 2011
5x = 2011 - 6
5x = 2005
x = 2005 : 5
x = 401
b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
c, ghi lại đề
d, ghi lại đề
Bài 2:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
a,\(\frac{x+1}{2}\)\(=\frac{8}{x+1}\)
\(\Leftrightarrow\)(x+1)\(\times\)(x+1) = 8 \(\times\)2
\(\Leftrightarrow\)(x+1)2 = 16
\(\Leftrightarrow\)(x+1)2 = 42
\(\Rightarrow\)x+1 = 4
\(\Rightarrow\)x = 4 - 1
\(\leftrightarrow\)x = 3
\(.a.\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Leftrightarrow\left[\begin{matrix}\left(x-7\right)^{x+1}=0\\\left[1-\left(x-7\right)^{10}\right]=0\end{matrix}\right.\)
+ Nếu \(\left(x-7\right)^{x+1}=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=0+7\)
\(\Rightarrow x=7\)
+ Nếu \(1-\left(x-7\right)^{10}=0\)
\(\Rightarrow\left(x-7\right)^{10}=1\)
\(\Rightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)
\(\Rightarrow\left[\begin{matrix}x-7=1\\x-7=-1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=1+7\\x=-1+7\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=8\\x=6\end{matrix}\right.\)
Vậy : \(x\in\left\{6;7;8\right\}\)
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2011}\)
\(\Rightarrow5x+6=2011\)
\(\Rightarrow5x=2011-6\)
\(\Rightarrow5x=2005\)
\(\Rightarrow x=401\)