K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Mình ko bít có đúng ko nên sai đừng trách mình nhé !

\(A=\frac{7^{2011}+1}{7^{2013}+1}\)

\(7^2.A=\frac{7^{2013}+49}{7^{2013}+1}=\frac{7^{2013}+1+48}{7^{2013}+1}=\)\(\frac{7^{2013}+1}{7^{2013}+1}+\frac{48}{7^{2013}+1}=1\frac{48}{7^{2013}+1}\)

\(B=\frac{7^{2013}+1}{7^{2015}+1}\)

\(7^2.B=\)\(=\frac{7^{2015}+49}{7^{2015}+1}=\)\(\frac{7^{2015}+1+48}{7^{2015}+1}=\)\(\frac{7^{2015}+1}{7^{2015}+1}+\frac{48}{7^{2015}+1}=1\frac{48}{7^{2015}+1}\) 

 \(Vì\) \(1\frac{48}{7^{2013}+1}>1\frac{48}{7^{2013}+1}\)​​\(\Rightarrow7^2.A>7^2.B\)\(\Rightarrow A>B\)

\(Vậy\) \(A>B\)

11 tháng 8 2018

Bài 2 nè

ta xét B trước:

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..\)\(.....+\frac{1}{2015}-\frac{1}{2016}\)

   =\(\left(\frac{1}{1}+\frac{1}{3}+....+\frac{1}{2015}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{2016}\right)\)

\(=\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)

vậy A:B\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)\(:\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)

\(=1\)

31 tháng 1 2020

\(A=\frac{2015+2013+2011+...+5+3+1}{2015-2013+2011-2009+...+7-5+3-1}\)

Ta có : 2015 + 2013 + 2011 + ... + 5 + 3 + 1  

= [(2015 - 1) : 2 + 1].(2015 + 1) : 2

= 1008.2016 : 2 = 1016064

Lại có :  2015 - 2013 + 2011 - 2009 + ... + 7 - 5 + 3 - 1 (1008 số hạng

= (2015 - 2013) + (2011 - 2009) + ... + (7 - 5) + (3 - 1) (504 cặp)

= 2 + 2 + ... + 2 + 2 (504 số hạng 2)

= 2 x 504 = 1008 

Khi đó A = \(\frac{1016064}{1008}=1008\)

b) tTa có : B = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)

=> \(\frac{B}{100}\) = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{97.3}+\frac{100}{99.1}}\)

\(=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+\frac{1}{5}+\frac{1}{95}+..+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{2}\)

Khi đó : B/100 = 1/2

=> B = 50 

Vậy B = 50

6 tháng 2 2020

giỏi ghê vậy Hân

14 tháng 11 2019

\(\frac{A}{B}=\frac{7^{2013}+1}{7^{2014}+1}.\frac{7^{2015}+1}{7^{2014}+1}=\frac{7^{4028}+7^{2013}+7^{2015}+1}{7^{4028}+2.7^{2014}+1}=\)

\(=\frac{7^{4028}+7^{2013}\left(1+7^2\right)+1}{7^{4028}+2.7.7^{2013}+1}=\frac{7^{4028}+50.7^{2013}+1}{7^{4028}+14.7^{2013}+1}>1\)

\(\Rightarrow A>B\)

2 tháng 2 2018

i don't care

5 tháng 8 2015

\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right)......\left(1-\frac{1}{2011}\right)\)

\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2010}{2011}\)

\(=\frac{6.7.8.9.....2010}{7.8.9.10.....2011}\)

\(=\frac{6}{2011}\)

 

 

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)