K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

Lời giải:

Muốn chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\) ta chỉ cần chỉ ra \(ab+bc+ac=1\)

Thật vậy:

\((a+b+c)^2-(a^2+b^2+c^2)=2^2-2\)

\(\Leftrightarrow a^2+b^2+c^2+2(ab+bc+ac)-(a^2+b^2+c^2)=2\)

\(\Leftrightarrow 2(ab+bc+ac)=2\Rightarrow ab+bc+ac=1\)

Do đó ta có đpcm.

27 tháng 11 2023

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

25 tháng 8 2023

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
27 tháng 3 2020

Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath

17 tháng 4 2020

tvbobnokb' n

iai

  ni;bv nn0

11 tháng 12 2020

1/a+1/b+1/c=0

=>(ab+ac+bc)/abc=0

=> ab+ac+bc=0

(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=0

=> a^2+b^2+c^2=0

Bạn xem lại đề nhé.

11 tháng 11 2019

Ta có:

0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)

Tương tự:

0 < b < 1 ⇒ b2 - b < 0 (2)

0 < c < 1 ⇒ c2 - c < 0 (3)

Cộng (1); (2); (3) vế theo vế ta được:

a2 + b2 + c2 - a - b - c < 0

⇔ a2 + b2 + c2 < a + b + c

⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)