K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)

\(=16m^2+16m+4-16m-12=16m^2-8\)

Để phương trình có hai nghiệm thì \(2m^2>=1\)

=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)

\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)

\(=64m^3+96m^2+48m+8-48m^2-60m-18\)

\(=64m^3+48m^2-12m-10\)

NV
16 tháng 1

b.

Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)

Xét với \(m\ne\dfrac{5}{2}\):

\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)

Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)

Két hợp Viet với điều kiện đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)

Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)

\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)

\(\Rightarrow32m^2-148m+161=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)

NV
16 tháng 1

Câu b của em là 2 ý phân biệt đúng không?

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

NV
28 tháng 4 2021

Pt có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)

\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)

\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)

A) delta=(4m-2)^2-4×4m^2

=16m^2-8m+4-16m^2

=-8m+4

để pt có hai nghiệm pb thì -8m+4>0

Hay m<1/2

B để ptvn thì -8m+4<0

hay m>1/2

Bài 2: 

a: \(x^2-4x+3=0\)

=>x=1 hoặc x=3

\(x_1^2+x_2^2=1^2+3^2=10\)

b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)

c: \(x_1^3+x_2^3=1^3+3^3=28\)

d: \(x_1-x_2=1-3=-2\)