Cho a,b thuộc Z, a>b, b>0. CMR: a/b>a+2015/b+2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{x^2-1-4}{x^2-1}=1-\frac{4}{x^2-1}\)=> biểu thức này thuộc Z <=> x^2-1 lần lượt thuộc Ư(4) <=> thuộc (+-1;+-2;+4)
đến đây xét các th mà giải x nha.
ví dụ: x^2-1=1 ,=> x^2=2 <=> x=+- căn 2
b) xét hiệu: \(\frac{a}{b}-\frac{a+2015}{b+2015}=\frac{ab+2015a-ab-2015b}{b\left(b+2015\right)}=\frac{2015\left(a-b\right)}{b\left(b+2015\right)}>0\)với mọi a>b>0
<=> \(\frac{a}{b}-\frac{a+2015}{b+2015}>0\Leftrightarrow\frac{a}{b}>\frac{a+2015}{b+2015}\)
vì a-2015; b-2015; c-2015 là 3 số nguyên liên tiếp=> a+1=b; a+2=c
ta có:(a-2015)+(b-2015)+ (c-2015) =2016
=>(a-2015)+(a+1-2015)+(a+2-2015)=2016
=>(a*-2015)+(a-2014)+(a-2013)=2016
=>3a-(2015+2014+2013)=2016
=>3a-6042=2016
=>3a=2016+6042=8058
=>a=8058:3=2686
=>b=2686+1=2687
=>c=2686+2=2688
\(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}\Rightarrow\left(a+2014\right)\left(b-2015\right)=\left(a-2014\right)\left(b+2015\right)\)
\(\Rightarrow\) \(ab+2014b-2015a-2014.2015=ab+2015a-2014b-2014.2015\)
\(\Rightarrow\) \(\left(ab-ab\right)+\left(-2014.2015+2014.2015\right)=\left(2015a+2015a\right)-\left(2014b+2014b\right)\)
\(\Rightarrow0+0=4030a-4028b\)
\(\Rightarrow4030a=4028b\) \(\Rightarrow\frac{a}{b}=\frac{4028}{4030}=\frac{2014}{2015}\Rightarrow\frac{a}{2014}=\frac{b}{2015}\)
Vậy nếu \(\frac{a+2014}{a-2014}=\frac{b+2015}{b-2015}\) thì \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)
Ta có: a2014=b2015
=>a2014=b2014.b
=>a2014:b2014=b
=>(a:b)2014=b
=>((a:b)1007)2=b
Vì ((a:b)1007)2>0
=>b>0
=>ĐPCM
Vì a khác 0 nên a2014 khác 0 mà a2014 = b2015 => b khác 0
Lại có a2014 = (a1007)2 > 0 với mọi a khác 0 (Bình phương của một số luôn không âm)
nên b2015 > 0 Hay b2014. b > 0 => b2014 ; b cùng dấu
Mà b2014 > 0 với mọi b khác 0 => b > 0
câu 2 :
ab+ bc + ca = 2015
=> 2015 +a^2 = a^2 + ab + bc + ca
=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)
Tương tự : 2015+b^2 = ( b + c )(b +a )
2015 + c^2 = ( c + a )(c + b ) thay vào ta có :
( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương
Câu 1 ) :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)
=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)
=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)
=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0
=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0
=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)
=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)
=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)
=> 2015 - z = 0 hoặc 2015 -x = 0 hoặc 2015 - y = 0
=> z = 2015 hoặc x= 2015 hoặc y = 2015
Vậy trong ba số có ít nhất 1 số bằng 2015