Mik đang cần gấp ai trả lời jup mik mii cho 1 card mobi 20k nha và mik sẽ tick
1 Chứng mik rằng : trong 1 tứ giác lồi tổng của 2 đường chéo lớn hơn nửa chu vi và nhỏ hơn chu vi của tứ giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tứ giác là ABCD,O là giao điểm của 2 đường chéo
Xét t/g AOB có: OA+OB>AB
Xét t/g BOC có: OB+OC>BC
Xét t/g COD có: OC+OD>CD
Xét t/g AOD có: OA+OD>DA
Do đó: OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA
=>2(OA+OB+OC+OD)>AB+BC+CD+DA
=>AC+BD > \(\frac{AB+BC+CD+DA}{2}\) (1)
Xét t/g ABC có: AB+BC > AC
Xét t/g BDC có: BC+DC > BD
Xét t/g CDA có: CD+AD > AC
Xét t/g DAB có: DA+AB > BD
Do đó AB+BC+BC+CD+CD+AD+DA+AB > AC+BD+AC+BD
=>2(AB+BC+CD+DA) > 2(AC+BD)
=>AB+BC+CD+DA > AC+BD (2)
Từ (1) và (2) => đpcm
Áp dụng BĐT tam giác cho các tam giác OAB, OBC, OCD, ODA ta có:
\(\left\{{}\begin{matrix}OA+OB>AB\\OB+OC>BC\\OC+OD>CD\\AO+OD>AD\end{matrix}\right.\)
\(\Rightarrow OA+OB+OB+OC+OC+OD+OA+OD>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD>\dfrac{AB+BC+CD+DA}{2}\)
Tương tự, áp dụng BĐT tam giác cho các tam giác ABC,BCD, CDA, DAB ta có: \(AB+BC>AC;BC+CD>BD;CD+DA>AC;DA+AB>BD\)
Cộng vế với vế:
\(2\left(AB+BC+CD+DA\right)>2\left(AC+BD\right)\)
\(\Leftrightarrow AC+BD< AB+BC+CD+DA\)
Bán kính hình tròn lớn so với bán kính hình tròn bé là: 200%
Slớn so với Sbé là: 200%\(\times\)200% = gấp 4 lần
Slớn là: 134,5:(4+1)\(\times\)4 = 107,6(m2)
Sbé là: 134,5-107,6 = 26,9(m2)
Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD.
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có:
AB < OA + OB (1)
BC < OB + OC (2)
CD < OC + OD (3)
DA < OD + OA (4)
(1) + (2) + (3) + (4) :
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD)
hay (1/2)(AB + BC + CD + DA) < AC + BD (*)
Mặt khác :
AC < AB + BC (1')
BD < BC + CD (2')
AC < CD + DA (3')
BD < DA + AB (4')
(1') + (2') + (3') + (4') :
2(AC + BD) > 2(AB + BC + CD + DA)
hay AC + BD < AB + BC + CD + DA (**)
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA
Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.
Gọi O là giao điểm của AC và BD ta có:
AC+BD=AO+OB+OC+OD>AB+CD=a+c
Tương tự: AC+BD>b+d.
Suy ra: 2(AC+BD)>a+b+c+d⇒AC+BD=a+b+c+d2
Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.
Theo bất đẳng thức tam giác ta có:
AC<a+b;AC<c+d
BD<b+c;BD<a+d
⇒2(AC+BD)<2(a+b+c+d).
⇒AC+BD<a+b+c+d.
Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.