K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

GTLN chứ ?

\(P\le\frac{1}{9}\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}+\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}+\frac{1}{az}+\frac{1}{bx}+\frac{1}{cy}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

?

21 tháng 8 2020

tìm giá trị nhỏ nhất cơ mà bạn PHÙNG MINH QUÂN ???

24 tháng 9 2019

Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Sau đó chứng minh tương tự bunhiacopxki

14 tháng 6 2017

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

14 tháng 6 2017

* C1 :(bz - cy)/a = (abz - acy)/a2

(cx - az)/b = (bcx - abz)/b2

(ay - bx)/c = (acy - bcx)/c2

Mà (bz - cy)/a = (cx - az)/b = (ay - bx)/c

=>(abz - acy)/a2 = (bcx - abz)/b2 = (acy - bcx)/c2 = (abz - acy + bcx - abz + acy - bcx)/a2 + b2 + c2 = 0

=>(bz - cy)/a = (cx - az)/b = (ay - bx)/c = 0

=>bz - cy = cx - az = ay - bx = 0

*Xét bz - cy = 0

=>bz = cy

=>z/c = y/b

Chứng minh tương tự = >x/a = y/b ; x/a = z/c

=> x/a = y/b = z/c

*C2 : 

(bz - cy)/a = (abz - acy)/ax

(cx - az)/by = (bcx - abz)/by

(ay - bx)/cz = (acy - bcx)/cz

Làm tương tự như C1

16 tháng 10 2019

Chúc bạn học tốt!