K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

TH1: 2x+2017=2019

2x2 =2019-2017

2x2 =2

x2 =2 : 2

x2 =1

=>x=1

TH2: 2x2 +2017= -2019

tự tính tiếp nha

20 tháng 8 2018

\(\left|2x^2+2017\right|=2019\)

\(\Rightarrow\orbr{\begin{cases}2x^2+2017=2019\\2x^2+2017=-2019\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x^2=2\\2x^2=-4036\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-2018\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\pm1\\x\in\varnothing\end{cases}}\)

vậy_

16 tháng 5 2018

Với x < 2017 

pt <=> (2017 - x) + 2018 - x + 2019 - x = 2

    <=> 6054 - 3x = 2

    <=> 3x = 6054 - 2 = 6052

    <=>  x = \(\frac{6052}{3}>2017\) (Loại)

Với \(2017\le x\le2018\)

pt <=> (x - 2017) + (2018 - x) + (2019 - x) = 2

    <=>  2020 - x = 2

    <=>  x = 2020 - 2 = 2018 (Nhận) 

Với \(2018< x\le2019\)

pt <=> (x - 2017) + (x - 2018) + (2019 - x) = 2 

    <=>  x - 2016 = 2

    <=>  x = 2018  (loại)

Với \(2019< x\)

pt <=> (x - 2017) + (x - 2018) + (x - 2019) = 2 

    <=> 3x - 6054 = 2

    <=>  3x = 6056

    <=> x = \(\frac{6056}{3}< 2019\) (Loại )

Vậy , phương trình chỉ có một nghiệm x = 2018 

|2017-x|+|2018-x|+|2019-x|=2

nên sẽ có ít nhất 1 giá trị bằng 0

1. |2017-x|=0

2017-x=0

x=2017

=>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn)

2.|2018-x|=0

2018-x=0

x=2018

=>|2017-x|+|2018-x|+|2019-x|=2(thỏa mãn)

3.|2019-x|=0

2019-x=0

x=2019 =>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn) Vậy x=2018 để thỏa mãn điều kiện|2017-x|+|2018-x|+|2019-x|=2

27 tháng 2 2020

꧁༺ⓂⓉⓅ_ⓀⒶⒾⓉⓄ༻꧂( ༺TEAM༻❺❾☆ⓇⓄⓎⒶⓁ )

chép mạng nhớ ghi nguồn nha 

https://h7.net/hoi-dap/toan-7/tim-x-biet-2017-x-2018-x-2019-x-2-faq358792.html

29 tháng 12 2020

\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}+\dfrac{x-3}{2017}=3\)

\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)+\left(\dfrac{x-3}{2017}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-1-2019}{2019}+\dfrac{x-2-2018}{2018}+\dfrac{x-3-2017}{2017}=0\)

\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)

Vi \(\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\ne0\)

nên \(x-2020=0\)

\(\Leftrightarrow x=2020\)

Vậy ...

29 tháng 12 2020

undefined

Đặt 2017-x=a; 2019-x=b

\(\Leftrightarrow a+b=4036-2x\)

\(\Leftrightarrow-\left(a+b\right)=2x-4036\)

Phương trình trở thành: \(a^3+b^3-\left(a+b\right)^3=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)

\(\Leftrightarrow-3ab\left(a+b\right)=0\)

mà -3<0

nên \(ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(2017-x\right)\left(2019-x\right)\left(4036-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\4036-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)

Vậy: S={2017;2018;2019}

18 tháng 3 2021

Cho \(\left(2017-x\right)^3=x;\left(2019-x\right)^3=y;\left(2x-4036\right)^3=z\)

Ta có: \(x+y+z=0\)

\(=>x+y=-z\) \(=>\left(x+y\right)^3=-z^3\)

Ta có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3=-z^3-3xy\left(-z\right)+z^3=3xyz\)

Vì (2017-x)3 + (2019-x)3 + (2x-4036)3 =0 

=>\(3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

Gải phương trình được x=2017; x=2019; x=2018

29 tháng 1 2020

x = 2018 hoặc x = +2018            chất vl

\(\left|2017-x\right|+\left|2018-x\right|+\left|2019-x\right|=2\left(1\right)\)

TH1: \(x\le2017\)

\(\left(1\right)\Leftrightarrow2017-x+2018-x+2019-x=2\)

\(\Rightarrow6054-3x=2\)

\(\Rightarrow3x=6052\)

\(\Rightarrow x=\frac{6052}{3}\)(loại)

TH2: \(2017< x\le2018\)

\(\left(1\right)\Leftrightarrow x-2017+2018-x+2019-x=2\)

\(\Rightarrow2020-x=2\)

\(\Rightarrow x=2018\)(thỏa mãn điều kiện)

TH3: \(2018< x\le2019\)

\(\left(1\right)\Leftrightarrow x-2017+x-2018+2019-x=2\)

\(\Rightarrow x-2016=2\)

\(\Rightarrow x=2018\)(thỏa mãn điều kiện)

TH4: \(x>2019\)

\(\left(1\right)\Leftrightarrow x-2017+x-2018+x-2019=2\)

\(\Rightarrow3x=6056\)

\(\Rightarrow x=\frac{6056}{3}\)(loại)

Vậy \(x=2018\)

4 tháng 5 2018

=>|x-2017|+|2018-x|+|2019-x|=2(mỗi s/h < =2)                           TH1;|2019-x|=0=>2019-x=0                                                           

 ta có; |x-2017|+|2018-x|+|2019-x| >= |x-2017+2018-x|+|2019-x|                        =>x=2019=>tích =3(L)

=>                                      >= |1|+|2019-x|=1+|2019-x|            TH2;|2019-x|=1=>hoặc2019-x=1;hoặc = -1                                          => 2                                     >= 1+|2019-x|                                                 =>hoặc x=2018;hoặc = 2020

 => 1                                         >= |2019-x|                                                 =>hoặc tích=2(TM);tích=6(L)                                                                                                                                      Vậy x=2018

=>|2019-x|={1;0}

5 tháng 5 2018

viết nhầm ; "tích" sửa thành "tổng"

20 tháng 3 2019

ta có |2017-x|+|2019-x|=|2017-x|+|x-2019|>=|2017-x+x-2019|=|-2|=2

=>|2017-x|+|x-2019|>=2

Dấu "=" xảy ra khi (2017-x)(x-2019)>=0

<=>\(\orbr{\begin{cases}\hept{\begin{cases}2017-x\le0\\x-2019\le0\end{cases}}\\\hept{\begin{cases}2017-x>0\\x-2019>0\end{cases}}\end{cases}}\)

20 tháng 3 2019

thui mỏi tay quá,tự nghĩ típ

17 tháng 9 2020

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)

=> x + 2020 = 0

=> x = -2020

17 tháng 9 2020

            Bài làm :

Ta có :

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

 \(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy x=-2020