Cho a, b, c phân biệt thỏa mãn: \(a^2\left(b+c\right)=b^2\left(c+a\right)=2012\)
Tính: M= \(c^2\left(a+b\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Ta\) \(có:\) \(1+a^2=ab+bc+ca+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(c+a\right)\)
\(1+b^2=ab+bc+ca+b^2=\left(a+b\right)\left(b+c\right)\)
\(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(c+b\right)\)
\(Khi\) \(đó:\) \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}\)
\(\Rightarrow A=1\)
làm cái đề ra ấy, ngại viết lại đề :P
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Rightarrow M=1^{2018}+1^{2019}+1^{2020}=1+1+1=3\)
Thay 1 = ab+bc+ac rồi phân tích thành nhân tử.
Kết quả bằng A=1
Đặt: \(\frac{a}{2013}=\frac{b}{2012}=\frac{c}{2011}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2012k\\c=2011k\end{cases}}\)
\(P=\frac{\left(a-c\right)^4}{\left(a-b\right)^2\left(b-c\right)^2}=\frac{\left(2013k-2011k\right)^4}{\left(2013k-2012k\right)^2\left(2012k-2011k\right)^2}=\frac{16k^4}{k^4}=16\)
a,b,c phân biệt \(\Rightarrow a\ne b\ne c\)
\(a^2\left(b+c\right)=b^2\left(c+a\right)=2012\)
\(\Rightarrow a^2b-ab^2+a^2c-b^2c=0\)
\(\Rightarrow ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)=0\)
\(\Rightarrow\left(a-b\right)\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=0\) vì \(a\ne b\)
\(a^2\left(b+c\right)=b^2\left(c+a\right)\)
\(\Rightarrow\dfrac{a^2}{a+c}=\dfrac{b^2}{b+c}=\dfrac{a^2-b^2}{a-b}=a+b\)
\(\Rightarrow a^2=\left(a+b\right)\left(a+c\right)\)
\(\Rightarrow2012=a^2\left(b+c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b\right)\left(ab+bc+ca+c^2\right)=c^2\left(a+b\right)\)
Vậy....................
bn cs tự tin vs câu trả lời of mk ko?
nếu bn lam Đ thì cho mk thank nha!