cho 2 số dương a, b luôn thay đổi nhưng tích luôn bằng 8
tìm SMIN = a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\Rightarrow a+b+c\le3\)
\(\Rightarrow\dfrac{a}{\sqrt[3]{3a+bc}}\le\dfrac{a}{\sqrt[3]{a\left(a+b+c\right)+bc}}=\sqrt[3]{2}.\sqrt[3]{\dfrac{a}{a+b}.\dfrac{a}{a+c}.\dfrac{a}{2}}\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{a}{2}\right)\)
Cộng vế và rút gọn:
\(E\le\dfrac{\sqrt[3]{2}}{3}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(E\le\dfrac{\sqrt[3]{2}}{3}\left(3+\dfrac{3}{2}\right)=\dfrac{3\sqrt[3]{2}}{2}\)
Lời giải:
Theo hệ quả quen thuộc của bđt AM-GM:
$(a+b+c)^2\leq 3(a^2+b^2+c^2)\leq 9$
$\Rightarrow a+b+c\leq 3$ (đpcm)
Từ đây ta có:
\(E\leq \frac{a}{\sqrt[3]{(a+b+c)a+bc}}+\frac{b}{\sqrt[3]{(a+b+c)b+ac}}+\frac{c}{\sqrt[3]{c(a+b+c)+ab}}\)
\(=\frac{a}{\sqrt[3]{(a+b)(a+c)}}+\frac{b}{\sqrt[3]{(b+c)(b+a)}}+\frac{c}{\sqrt[3]{(c+a)(c+b)}}\)
\(\leq \frac{\sqrt[3]{2}}{3}(\frac{a}{2}+\frac{a}{a+b}+\frac{a}{a+c})+\frac{\sqrt[3]{2}}{3}(\frac{b}{2}+\frac{b}{b+a}+\frac{b}{b+c})+\frac{\sqrt[3]{2}}{3}(\frac{c}{2}+\frac{c}{c+a}+\frac{c}{c+b})\)
\(=\frac{\sqrt[3]{2}(a+b+c)}{6}+\frac{\sqrt[3]{2}}{3}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})\leq \frac{3\sqrt[3]{2}}{2}\)
Vậy.................
dcv_new
\(\Sigma\frac{a^2}{pab+qca}\ge\frac{\left(a+b+c\right)^2}{\left(p+q\right)\left(ab+bc+ca\right)}\ge\frac{3}{p+q}\)
2, ta có \(\sqrt{a}=\sqrt{\frac{a}{x}}\cdot\sqrt{x}\)
vậy ta được \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(\sqrt{\frac{a}{x}}\cdot\sqrt{x}+\sqrt{\frac{b}{y}}\cdot\sqrt{y}+\sqrt{\frac{c}{z}}\cdot\sqrt{z}\right)^2\le\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)=S\)
dấu đẳng thức xảy ra khi \(\sqrt{x}:\sqrt{\frac{a}{x}}=\sqrt{y}:\sqrt{\frac{b}{y}}=\sqrt{z}:\sqrt{\frac{c}{z}}\Leftrightarrow\hept{\begin{cases}\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1\\\frac{x}{\sqrt{a}}=\frac{y}{\sqrt{b}}=\frac{z}{\sqrt{c}}\end{cases}}\)
\(\Rightarrow x=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};z=\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
vậy min (x+y+z)=\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{3}{x}+\frac{9}{y}\ge2\sqrt{\frac{3}{x}\cdot\frac{9}{y}}=2\sqrt{\frac{27}{3}}=6\)(1)
\(3x+y\ge2\sqrt{3xy}=6\)=> \(\frac{26}{3x+y}\le\frac{13}{3}\)<=> \(-\frac{26}{3x+y}\ge-\frac{13}{3}\)(2)
Từ (1) và (2) => \(\frac{3}{x}+\frac{9}{y}-\frac{26}{3x+y}\ge6-\frac{13}{3}=\frac{5}{3}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\frac{3}{x}=\frac{9}{y}\\3x=y\\xy=3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Vậy GTNN của P = 5/3
Do vai trò của \(a,b\)là như nhau nên giả sử \(a\ge b\).
Ta có nhận xét rằng \(ab\)lớn nhất khi giá trị của \(a\)và \(b\)bằng nhau hoặc \(a-b=1\).
Nếu \(a-b>1\): ta thay tích \(ab\)bởi tích \(\left(a-1\right)\left(b+1\right)\)được
\(\left(a-1\right)\left(b+1\right)-ab=ab+a-b-1-ab=a-b-1>0\)
do đó \(a-b\le1\).
Vì \(a,b\)là số tự nhiên mà \(a+b=2019\)là số lẻ nên \(P\)đặt max tại \(a-b=1\)
\(\Rightarrow\hept{\begin{cases}a=1010\\b=1009\end{cases}}\).
Vậy \(maxP=1010.1009\).
Ta có : \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a;b\) ( điều này luôn đúng )
\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{a}.\sqrt{b}+\left(\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
Theo GT , \(ab=8\)
\(\Rightarrow a+b\ge2\sqrt{8}=4\sqrt{2}\)
Dấu " = " xảy ra
\(\Leftrightarrow a=b=\sqrt{8}\)
Vậy \(S_{min}=a+b=4\sqrt{2}\Leftrightarrow a=b=\sqrt{8}\)
Lời giải:
Xét hiệu \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0,\forall a,b>0\)
\(\Rightarrow S=a+b\geq 2\sqrt{ab}=2\sqrt{8}=4\sqrt{2}\)
Vậy $S_{\min}=4\sqrt{2}$
Dấu "=" xảy ra khi \(\sqrt{a}=\sqrt{b}\Leftrightarrow a=b=\sqrt{8}\)
P/s: đây cũng chính là nội dung của bất đẳng thức Cô-si: Với hai số không âm $a,b$ thì ta luôn có: \(a+b\geq 2\sqrt{ab}\)
lớp 8 đầu năm đâu đã học bđt Cosi