Vẽ tam giác ABC. Gỉa sử \(\widehat{A}\) = 60o. Hai tia phân giác kẻ từ đỉnh B và C cắt nhau tại I.
a, So sánh \(\widehat{IBC}+\widehat{ICB}\) với \(\widehat{ABC}+\widehat{ACB}\)
b, Tính \(\widehat{BIC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s: Hình vẽ chỉ để giúp nhìn rõ vấn đề hơn nhưng độ chính xác không cao
a) Vì BI là tia phân giác của góc ABC
\(\Rightarrow\widehat{IBC}=\dfrac{\widehat{ABC}}{2}\left(1\right)\)
Vì CI là tia phân giác của góc ACB
\(\Rightarrow\widehat{ICB}=\dfrac{\widehat{ACB}}{2}\left(2\right)\)
Từ (1) và (2) suy ra
\(\widehat{IBC}+\widehat{ICB}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}=\dfrac{\widehat{ABC}+\widehat{ACB}}{2}\)
Vì \(\dfrac{\widehat{ABC}+\widehat{ACB}}{2}< \widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}< \widehat{ABC}+\widehat{ACB}\)
b) Vì \(\widehat{A}=60^0\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)
Hay \(\widehat{IBC}+\widehat{IBA}+\widehat{ICB}+\widehat{ICA}=120^0\)
\(\Rightarrow2\widehat{IBC}+2\widehat{ICB}=120^0\)
\(\Rightarrow2\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)
\(\Rightarrow\widehat{IBC}+\widehat{ICB}=60^0\)
Ta có: \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
\(\Rightarrow60^0+\widehat{BIC}=180^0\)
\(\Rightarrow\widehat{BIC}=180^0-60^0=120^0\)
Bài 3:
góc C=90-55=35 độ
Bài 1:
góc IBC=góc ABC/2=40 độ
góc ICB=40/2=20 độ
=>góc IBC+góc ICB=60 độ
=>góc BIC=120 độ
Ta có: I là giao điểm của hai đường phân giác góc A và góc B nên suy ra: CI là đường phân giác của góc C.
Vậy \(\widehat {ICA} = \widehat {ICB}\) ( tính chất tia phân giác của một góc).
Đáp án: A. \(\widehat {ICA} = \widehat {ICB}\).
a) I là giao điểm của ba đường phân giác tại ba góc A, B, C nên:
\(\widehat {IAB} = \widehat {IAC};\widehat {IBA} = \widehat {IBC};\widehat {ICB} = \widehat {ICA}\).
Tổng ba góc trong một tam giác bằng 180° nên:
\(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = 180^\circ \\\widehat {IAB} + \widehat {IAC} + \widehat {IBA} + \widehat {IBC} + \widehat {ICB} + \widehat {ICA} = 180^\circ \\2\widehat {IAB} + 2\widehat {IBC} + 2\widehat {ICA} = 180^\circ \end{array}\)
Vậy \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \).
b) Tổng ba góc trong một tam giác bằng 180°. Xét tam giác BIC:
\(\begin{array}{l}\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \\\widehat {BIC} = 180^\circ - (\widehat {IBC} + \widehat {ICB})\end{array}\).
Mà \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \)→ \(\widehat {IBC} + \widehat {ICA} = 90^\circ - \widehat {IAB}\).
Vậy: \(\begin{array}{l}\widehat {BIC} = 180^\circ - (\widehat {IBC} + \widehat {ICB})\\\widehat {BIC} = 180^\circ - (90^\circ - \widehat {IAB})\\\widehat {BIC} = 90^\circ + \widehat {IAB}\end{array}\)
Mà \(\widehat {IAB} = \dfrac{1}{2}\widehat {BAC}\)(IA là phân giác của góc BAC).
Vậy \(\widehat {BIC} = 90^\circ + \widehat {IAB} = 90^\circ + \dfrac{1}{2}\widehat {BAC}\).
nhanh lên mình cần gấp lắm
giúp mình với huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu
vì BI là tia phân giác của ^ABC => ^ ABI = ^ IBC= ^ ABC / 2 = 80 / 2 =40
=>^IBC=40
vì CI là tia phân giác của ^ACB => ^ACI = ^ ICB = ACB / 2 = 40 / 2 = 20
=>^ICB = 20
Ta có : ^BIC+^IBC+^ICB= 180 ( tổng ba góc của 1 tam giác )
=> ^BIC +40+20 =180
=>^BIC = 120
mình ko vẽ đc hình , thông cảm . mà nếu đúng thì nhớ k !