Cho tứ giác ABCD. Có G là trung điểm của đoạn nối các trung điểm của hai đường chéo AC và BD. Gọi m là một đường thẳng không cắt cạnh nào hình thang ABCD; Gọi A',B',C',D',G' lần lượt là hình chiếu của A,B,C,D,G lên đường thẳng m. Chứng minh GG'=1/4 (AA' BB' CC' DD')
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E và F lần lượt là trung điểm của AC và BD; E' và F' lần lượt là hình chiếu của E, F trên đường thẳng m.
Khi đó, GG' là đường trung bình của hình thang EE'F'F
⇒ G G ' = 1 2 EE' +FF').
Mà EE' và FF' lần lượt là đường trung bình của hình thang AA'C'C và BB'D'D.
⇒ EE ' = 1 2 (AA' +CC') và FF ' = 1 2 (BB' +DD')
Thay vào (1) ta được ĐPCM
*Xét tam giác ABC có M; N là trung điểm của AB, BC nên MN là đường trung bình của tam giác.
⇒ M N / / A C ; M N = 1 2 A C ( 1 )
* Xét tam giác ADC có P; Q là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.
⇒ P Q / / A C ; P Q = 1 2 A C ( 2 )
* Từ (1) (2) suy ra PQ// MN; PQ = MN. Do đó, tứ giác MNPQ là hình bình hành.
* Mà O là giao điểm của hình bình hành MNPQ nên O là trung điểm MP
* Xét tam giác ABC có MI là đường trung bình nên: M I / / B C ; M I = 1 2 B C ( 3 )
* Xét tam giác BCD có PJ là đường trung bình của các tam giác nên: P J / / B C ; P J = 1 2 B C ( 4 )
Từ (3) ( 4) suy ra ; tứ giác MIPJ là hình bình hành. Mà O là trung điểm MP nên điểm O là trung điểm của đoạn thẳng IJ. Từ đó ta có O I → = - O J →
Đáp án D
Chọn đáp án B
+ Giả sử SO, AD cắt nhau. Khi đó SO, AD đồng phẳng, suy ra S thuộc mp (ABCD) (Vô lý). Đáp án A bị loại.
+ Giả sử MN cắt SC. Khi đó MN và SC đồng phẳng, suy ra C thuộc (SBD) (Vô lý). Do đó đáp án C bị loại.
+ Giả sử SA cắt BC. Khi đó SA, BC đồng phẳng. Suy ra S thuộc mp (ABCD) (Vô lý). Đáp án D bị loại. MN, SO cùng nằm trong mp (SBD), không song song và trùng nhau.