K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Ta có:
\(A< \sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{25}}}}\)
\(\Leftrightarrow A< \sqrt{25}=5\)(1)
\(B< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24+\sqrt[3]{27}}}}\)
\(\Leftrightarrow B< \sqrt[3]{27}=3\)(2)
Từ (1) và (2) suy ra A+B<5+3=8
Ta có:
\(A>\sqrt{19,36}=4,4\)(3)
\(B>\sqrt[3]{17,576}=2,6\)(4)
Từ (3) và (4) suy ra A+B>4,4+2,6=7
Vậy 7<A+B<8

29 tháng 8 2016

20 < 25 => \(\sqrt{20}< \sqrt{25}\)= 5 => 20 + \(\sqrt{20}\)< 20 + 5 = 25 => \(\sqrt{20+\sqrt{20}}< \sqrt{25}\)= 5

Tiếp tục như vậy,ta có B < 5 (1)

24 < 27 => \(\sqrt[3]{24}< \sqrt[3]{27}\)= 3 => 24 +\(\sqrt[3]{24}\)< 24 + 3 = 27 => \(\sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{27}\)= 3

Tiếp tục như vậy,ta có C < 3 (2).Cộng (1) và (2),vế theo vế,ta có B + C < 5 + 3 = 8

Em mới học lớp 7 thôi,chưa biết chứng minh B + C > 7.

29 tháng 8 2016

19,36 < 20 < 25 => 4,4 <\(\sqrt{20}\)< 5 => 4,4 < \(\sqrt{20}< \sqrt{20+4,4}\) <\(\sqrt{20+\sqrt{20}}\) <\(\sqrt{20+5}=5\)

=> 4,4 <\(\sqrt{20+4,4}< \sqrt{20+\sqrt{20+\sqrt{20}}}\)\(\sqrt{20+5}\)= 5

Tiếp tục như vậy,ta có 4,4 < B < 5 (1)

17,576 < 24 < 27 => 2,6 <\(\sqrt[3]{24}\)< 3 => 2,6 <\(\sqrt[3]{24}< \sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24}}< \sqrt[3]{24+3}\)= 3

=> 2,6 <\(\sqrt[3]{24+2,6}< \sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24}}}< \sqrt[3]{24+3}\)= 3

Tiếp tục như vậy,ta có 2,6 < C < 3 (2).Cộng (1) và (2),vế theo vế,ta có 7 < B + C < 8 (đpcm)

P/S : Thay vì dùng 4,4 và 2,6 có thể dùng a và b thỏa mãn a2 < 20 ; b< 24 ; a + b = 7

        Thay vì dùng 5 và 3 có thể dùng m và n thoả mãn m2 > 20 ; n3 > 24 ; m + n = 8

16 tháng 9 2017
  • có A=\(\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}\)\(< \sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}\)\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20+5}}}}\)= 5 (tức là mỗi dấu căn cứ tuần tự như thế)
  • có B=\(\sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}}\)\(< \sqrt[3]{24+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{27}}}}\)=\(\sqrt[3]{24+\sqrt[3]{24+..+\sqrt[3]{24+3}}}\)= 3 (tức mỗi dấu căn cứ tuần tự như thế)           

\(\Rightarrow A+B< 3+5=8\)

mặt khác ta có A+B>\(\sqrt{20}+\sqrt[3]{24}=7.3566....>7\)\(\Rightarrow\left[A+b\right]=7\)

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)

3 tháng 6 2016

Haha ! =>))))))))

3 tháng 6 2016
  • Ta có:\(T=\sqrt{20+\sqrt{20+...+\sqrt{20}}}+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}>\sqrt{20}+\sqrt[3]{24}>7\)(1)
  • Mặt khác:

\(\sqrt{20+\sqrt{20+...+\sqrt{20}}}< \sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{25}}}}=5\)

  • Và:

\(\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24+\sqrt[3]{27}}}}=3\)

  • Nên \(T=\sqrt{20+\sqrt{20+...+\sqrt{20}}}+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}< 8\)(2).
  • Từ (1) và (2), ta có: \(7< T< 8\)đpcm
2 tháng 12 2020

\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)

    \(=\left(2\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)^2-8\sqrt{20+2\sqrt{\left(4+3\sqrt{3}\right)^2}}\)

    \(=\left(3\sqrt{3}+4\right)^2-8\sqrt{20+2\left(4+3\sqrt{3}\right)}\)

    \(=\left(3\sqrt{3}+4\right)^2-8\sqrt{28+6\sqrt{3}}\)

    \(=\left(3\sqrt{3}+4\right)^2-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)

    \(=43+24\sqrt{3}-8\left(3\sqrt{3}+1\right)=35\)

6 tháng 10 2016

Cái này thì....mình mù tịt

Vì chưa học!!!!

Ai đồng ý thì cho mình xin 1 k!!!

6 tháng 10 2016

hazz... có bạn HSG nào giải giúp ko

Ta có: \(x=\sqrt{97-56\sqrt{3}}+\sqrt{52+16\sqrt{3}}\)

\(=\sqrt{49-2\cdot7\cdot4\sqrt{3}+48}+\sqrt{48+2\cdot4\sqrt{3}\cdot2+4}\)

\(=\sqrt{\left(7-4\sqrt{3}\right)^2}+\sqrt{\left(4\sqrt{3}+2\right)^2}\)

\(=\left|7-4\sqrt{3}\right|+\left|4\sqrt{3}+2\right|\)

\(=7-4\sqrt{3}+4\sqrt{3}+2\)

\(=9\)

 

15 tháng 1 2021

Làm luôn phần y :D

y = \(\sqrt{33+20\sqrt{2}}+\sqrt{24-16\sqrt{2}}\)

y = \(\sqrt{33+2.10\sqrt{2}}+\sqrt{24-2.8\sqrt{2}}\)

y = \(\sqrt{33+2.5.2\sqrt{2}}+\sqrt{24-2.4.2\sqrt{2}}\)

y = \(\sqrt{25+2.5.\sqrt{8}+8}+\sqrt{16-2.4.\sqrt{8}+8}\)

y = \(\sqrt{\left(5+\sqrt{8}\right)^2}+\sqrt{\left(4-\sqrt{8}\right)^2}\)

y = |5 + \(\sqrt{8}\)| + |4 - \(\sqrt{8}\)

y = 5 + \(\sqrt{8}\) + 4 - \(\sqrt{8}\)   (Vì 4 > \(\sqrt{8}\) nên 4 - \(\sqrt{8}\) > 0)

y = 9

Vậy y = 9

Chúc bn học tốt!