K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
17 tháng 9 2021

Đồ thị hàm số đã cho cắt trục hoành tịa điểm có hoành độ bằng \(\frac{3}{4}\)nên 

\(0=\left(2-3m\right).\frac{3}{4}+m^2-1\)

\(\Leftrightarrow m^2-\frac{9}{4}m+\frac{1}{2}=0\)

\(\Leftrightarrow4m^2-9m+2=0\)

\(\Leftrightarrow4m^2-8m-m+2=0\)

\(\Leftrightarrow\left(4m-1\right)\left(m-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{4}\\m=2\end{cases}}\).

11 tháng 11 2015

a) Do DTHScat truc hoanh nhu tren => y=0; x=2

Thay y=0; x=2 vao ham so tren ta co: 0=(3m-2)2-2m => 6m-4-2m=0 =>4m-4=0 =>m=1

b) Do DTHS tren cat truc tung nhu tren => x=0; y=2

Thay x=0; y=2 vao ham so tren ta co: 2=(3m-2)0-2m => -2m =2 => m=-1

 

15 tháng 8 2021

Hàm số \(y=\left(m-2\right)x+m^2-3\) cắt đồ thị tại điểm có hoành độ bằng 4

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(\Leftrightarrow0=4\left(m-2\right)+m^2-3\)

\(\Leftrightarrow m^2+4m-11=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)

15 tháng 8 2021

Đồ thị cắt trục hoành tại điểm có hoành độ bằng 4 => A(4;0)

thay A(4;0) vào hàm số ta có:

\(\left(m-2\right).4+m^2-3=0\)

\(\Leftrightarrow4m-8+m^2-3=0\\ \Leftrightarrow m^2+4m-11=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)

31 tháng 8 2023

(d) cắt trục hoành độ là 1: 

⇒ \(x=1\) 

Và hàm số: \(y=0\)

Thay \(x=1\) tại giá trị hàm số \(y=0\)

Ta có: 

\(y=\left(m-3\right)\cdot1+3m-1=0\)

\(\Leftrightarrow\left(m-3\right)+3m-1=0\)

\(\Leftrightarrow m-3+3m-1=0\)

\(\Leftrightarrow4m-4=0\)

\(\Leftrightarrow4m=4\)

\(\Leftrightarrow m=1\)

Vậy: ...

3: Thay x=1 và y=0 vào (d), ta được:

m-3+3m-1=0

=>4m-4=0

=>m=1

21 tháng 4 2016

Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)

Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)

(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt

Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)

Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \)  là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)

\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :

\(x_2-x_1=x_3-x_2=x_4-x_3\)

\(\Leftrightarrow t_2=9t_1\left(a\right)\)

Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)

Từ (a) và (b) ta có : \(9m^2-14m-39=0\)

Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)

Câu 2: 

Thay x=0 và y=-3 vào (d), ta được:

m+2=-3

hay m=-5