cho tam gác ABC nhọn, đường cao AH. Vẽ HE vuông góc AB lại E, HF vuông góc AC tại F
a. chứng mnh AE.AB=AF.AC
b. tứ gác AEHF là hình gì? Nếu \(AH^2\)=BH.HC
c.Nếu tam gác ABC vuông tại A. Chứng minh AB.AC=AF.BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: AH^2=HB*HC
=>AH/HB=HC/HA
=>ΔAHC đồng dạng với ΔBHA
=>góc HAC=góc HBA
=>góc HAC+góc HAB=90 độ
=>góc BAC=90 độ
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: AH^2=HB*HC
=>AH/HB=HC/HA
=>ΔAHC đồng dạng với ΔBHA
=>góc HAC=góc HBA
=>góc HAC+góc HAB=90 độ
=>góc BAC=90 độ
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
Xét ΔFHA vuông tại F và ΔACB vuông tại A có
\(\widehat{FHA}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)
Do đó: ΔFHA đồng dạng với ΔACB
=>\(\dfrac{AF}{AB}=\dfrac{HA}{CB}\)
Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>AH=EF
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(EF\cdot BC=AH\cdot BC\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\)
\(\dfrac{AE\cdot AB}{EF\cdot BC}=\dfrac{AH^2}{AH\cdot BC}=\dfrac{AH}{BC}=\dfrac{AF}{AB}\)