cho a,b là các chữ số, chứng minh: nếu 6a + 11b chia hết cho 31 thì b0a chia hết cho 31
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DJ
0
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
2 tháng 11 2019
b0a= 100.b+a=5.31.b+31.a-(30.a+55.b)=31.(a+5b)-5.(6.a+11.b)
Ta thấy 31.(a+5b) chia hết cho 31 và 6.a+11.b chia hết cho 31 nên 5.(6.a+11.b) chia hết cho 31 => b0a chia hết cho 31
VM
0
13 tháng 9 2016
gọi ab là xy
6x+11y chia hế
31y chia hết cho 31 ﴾vì 31y cũng chia hết cho 31﴿
=> 6x + 42y chia hết cho 31
=> 6﴾x+7y﴿ chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên
x+7y buộc phải chia hết cho 31 ﴾ĐPCM﴿
TH
Thầy Hùng Olm
Manager
VIP
7 tháng 1 2023
Ta có 6a + 11b chia hết cho 31
Vậy: 6a + 42b - 31b = 6x(a+7b) - 31xb chia hết cho 31
nên: 6x(a + 7b) chia hết cho 31
Do vậy: a + 7b chia hết cho 31 (đpcm)