Tính nhanh:
D=1+1/2.(1+2)+1/3.(1+2+3)+...+1/200.(1+2+...+200)
Hộ mk với ai nhanh và đúng mk tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : tính
a,1/2 + 1/3 + 1/4
mk cần gấp
ai nhanh ai đúng tik cho mk
mk tik lại cho
ghi cách làm ra nha
(+) \(S=1+2+3+...+200\)
\(\Rightarrow S=\frac{\left(200+1\right)200}{2}=20100\)
(+) \(A=1.2+2.3+....+199.200\)
\(\Rightarrow3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+.....+199.200.\left(201-198\right)\)
\(\Rightarrow3A=1.2.3-0.1.2+2.3.4-1.2.3+.....+199.200.201-198.199.200\)
\(\Rightarrow3A=199.200.201\)
\(\Rightarrow A=\frac{199.200.201}{3}\)
\(\Rightarrow A=2666600\)
(+) \(B=1^2+2^2+....+200^2\)
\(\Rightarrow B=1\left(0+1\right)+2\left(1+1\right)+3\left(2+1\right)+....+200\left(199+1\right)\)
\(\Rightarrow B=1+1.2+2+2.3+3+.....+199.200+200\)
\(\Rightarrow B=\left(1+2+3+....+200\right)+\left(1.2+2.3+....+199.200\right)\)
\(\Rightarrow B=S+A\)
\(\Rightarrow B=2666600+20100=2686700\)
S = 1 + 2 + 3 + ... + 200
S = (1 + 200).200:2
S = 201.100
S = 20100
A = 1.2 + 2.3 + ... + 199.200
3A = 1.2.(3-0) + 2.3.(4-1) + ... + 199.200.(201-198)
3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + ... + 199.200.201 - 198.199.200
3A = 199.200.201
A = 199.200.67
A = 2666600
B = 12 + 22 + 32 + ... + 2002
B = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + ... + 200.(199 + 1)
B = 0.1 + 1.1 + 1.2 + 1.2 + 2.3 + 1.3 + ... + 199.200 + 1.200
B = (0.1 + 1.2 + 2.3 + ... + 199.200) + (1.1 + 1.2 + 1.3 + ... + 1.200)
B = 2666600 + (200 + 1).200:2
B = 2666600 + 201.100
B = 2666600 + 20100
B = 2686700
\(\frac{1}{2}\div\frac{3}{4}+\frac{1}{6}\div\frac{3}{4}\)
\(=\frac{3}{4}\div\left(\frac{1}{2}+\frac{1}{6}\right)\)
\(=\frac{3}{4}\div\frac{2}{3}\)
\(=\frac{9}{8}\)
\(\frac{1}{2}\div\frac{3}{4}-\frac{1}{6}\div\frac{3}{4}\)
\(=\left(\frac{1}{2}-\frac{1}{6}\right)\div\frac{3}{4}\)
\(=\frac{1}{3}\div\frac{3}{4}\)\
\(=\frac{4}{9}\)
1/2 : 3/4 + 1/6 : 3/4 = 1/2 x 4/3 + 1/6 x 4/3 = 4/3 x (1/2 + 1/6) = 4/3 x 2/3 = 8/9
1/2 : 3/4 - 1/6 : 3/4 = 1/2 x 4/3 - 1/6 x 4/3 = 4/3 x (1/2 - 1/6) = 4/3 x 1/3 = 4/9
Ta đã biết \(\dfrac{1}{a\cdot a}< \dfrac{1}{\left(a+1\right)\left(a-1\right)}\) ( a ϵ Z )
⇒ \(Q=\dfrac{1}{2\cdot2}+\dfrac{1}{3\cdot3}+\dfrac{1}{4\cdot4}+...+\dfrac{1}{200\cdot200}\) < \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\)
Ta có \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\)
= \(\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{199\cdot201}\right)\)
= \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right)\)
= \(\dfrac{1}{2}\left(1-\dfrac{1}{201}\right)=\dfrac{1}{2}\cdot\dfrac{200}{201}=\dfrac{100}{201}< \dfrac{100}{200}=\dfrac{1}{2}< \dfrac{3}{4}\)
Vậy Q < \(\dfrac{3}{4}\)
\(\frac{2}{3}x=\frac{5}{4}+\frac{1}{2}x\)
\(\Rightarrow\frac{2}{3}x-\frac{1}{2}x=\frac{5}{4}\)
\(\frac{1}{6}x=\frac{5}{4}\)
\(x=\frac{5}{4}:\frac{1}{6}\)
x = 15/2
10150