2 Cho tam giác ABC vuông ở A,AH là đường cao, M là 1 điểm trên BC sao cho CM=CA. Đường thẳng đi qua M song song với CA cắt AB tại I
a) Tứ giác ACMI là hình gì
b) Chứng minh rằng AM là phân giác của góc BAH và AI=AH
c) Chứng minh rằng AB+AC<AH+BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: C
Tứ giác ACMI có: MI //AC (gt) và A ^ = 90 ° (gt) nên là hình thang vuông.
HÌNH XẤU THÔNG CẢM
a) MI // AC nên \(\widehat{MIA}=\widehat{IAC}=90^o\)
vậy tứ giác ACMI là hình thang vuông
b) CM= CA nên \(\Delta ACM\)cân tại C \(\Rightarrow\widehat{CMA}=\widehat{CAM}\)
Mà \(\widehat{CMA}+\widehat{A_2}=90^o\); \(\widehat{CAM}+\widehat{A_1}=90^o\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét 2 tam giác vuông : \(\Delta AMH\)và \(\Delta AMI\)có :
\(AM\)chung ; \(\widehat{A_1}=\widehat{A_2}\)( cmt )
\(\Rightarrow\Delta AMH=\Delta AMI\)( cạnh huyền - góc nhọn )
\(\Rightarrow AI=AH\)
c) AB + AC = ( AI + BI ) + CM = AH + CM + BI
Mà \(\Delta BIM\)vuông tại I nên BI < BM
\(\Rightarrow AB+AC=AH+CM+BI< AH+CM+BM=AH+BC\)
a, Vì AC // MI
=> Tứ giác ACMI là hình thang
Vì góc A=90 độ
=> Tứ giác ACMI là hình thang vuông
a) Tự cm
b) Vì AB//DM mà ABvuoong góc với AC nên DM vuông góc với AC
Vì AH vuông góc với BC mà M thuộc BC nên CH vuông góc với AD
Xét tam giác ADC có:
DM vuông góc với AC
CM vuông góc với AD
mà DM cắt CM tại M
=> M là trực tâm của tam giác ADC
=> AM vuông góc với CD
=> đpcm
c) Xét tam giác NCm có
I là trung điểm của CM
=> IM=IN=IC
Xét tam giác IN< có
IM=IN
=> IMN cân tại I
=> IMN=INM góc
mà IMN=DMH
=> INM=DMH(3)
Xét tam giác AND có
H là trung điểm của AD
=> NH=HD=HA
tương tự tam giác NHD cân tại H
=>D=N( góc)(2)
mà HDN+DMH=90 độ(1)
Từ 1.2.3=> INM+MNH=90 độ
hay IN vuông góc với NH
đpcm
a) Theo đề bài ta có :
\(MI//CA\) ( GT)
=> ACMI là hình thang ( định nghĩa)
Xét hình thang ACMI ta có :
\(\widehat{A}=90^o\)
=> ACMI là hình thang vuông
@TrầnHươngGiang phần b,c đâu bn'