K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

\(A=\frac{10^{2006}+1}{10^{2007}+1}=\frac{10^{2006}+1}{\left(10^{2006}+1\right).10}=\frac{1}{10}\)

\(B=\frac{10^{2007}+1}{10^{2008}+1}=\frac{10^{2007}+1}{\left(10^{2007}+1\right).10}=\frac{1}{10}\)

Nếu đề bài là so sách thì A = B

10 tháng 9 2016

Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)(\(a;b;m\in\)N*)

Ta có: 

\(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)

\(B< \frac{10^{2007}+10}{10^{2008}+10}\)

\(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)

\(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)

=> \(B< A\)

10 tháng 9 2016

thank you

12 tháng 4 2017

\(Tacó:10A=\frac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)\(10B=\frac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)\(Vì:1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)

\(\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

12 tháng 12 2015

\(1-A=\frac{10^{2007}-10^{2006}}{10^{2007}+1}=\frac{9.10^{2006}}{10^{2007}+1}=\frac{9.2^{2007}}{10^{2008}+10}\)

\(1-B=\frac{10^{2008}-10^{2007}}{10^{2008}+1}=\frac{9.10^{2007}}{10^{2008}+1}\)

=>1-A< 1-B

=> A > B

5 tháng 2 2016

Đặt A=\(\frac{10^{2006}+1}{10^{2007}+1}\);\(B=\frac{10^{2007}+1}{10^{2008}+1}\)

10A=\(\frac{10\left(10^{2006}+1\right)}{10^{2007}+1}\)=\(\frac{10^{2007}+1+9}{10^{2007}+1}\)

10B=\(\frac{10\left(10^{2007}+1\right)}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}\)

Vì \(\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}\)nên 10A>10B nên A>B

 

28 tháng 3 2016

\(10A=\frac{10^{2006}+10}{10^{2007}+1}\)

\(10B=\frac{10^{2007}+10}{10^{2008}+1}\)

\(10A=1\frac{9}{10^{2007}+1}\)

\(10B=1\frac{9}{10^{2008}+1}\)

Vì \(\frac{9}{10^{2007}+1}\) > \(\frac{9}{10^{2008}+1}\) ==> a > b

K NHA