Chứng minh rằng nếu a, b, c là ba số dương thỏa mãn a+c=2b thì ta luôn có
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\sqrt{a}+\sqrt{c}\right)^2=a+2\sqrt{ac}+c=2b+2\sqrt{ac}\)(1)
Lại có: \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2\sqrt{b}+\sqrt{a}+\sqrt{c}}{b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\)
\(=\frac{\left(2\sqrt{b}+\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(Nhân cả tử & mẫu với \(\sqrt{a}+\sqrt{c}\))
\(=\frac{2\sqrt{ab}+2\sqrt{bc}+\left(\sqrt{a}+\sqrt{c}\right)^2}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(2)
Thế (1) và (2) => \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}\)\(=\frac{2\sqrt{ab}+2\sqrt{bc}+2b+\sqrt{ca}}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)
\(=\frac{2}{\sqrt{a}+\sqrt{c}}.\)
\(\Rightarrow\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)(đpcm).
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
muốn hỏi thì copy link rồi hỏi nhé bạn!!
https://olm.vn/bg/luyenthichuyen/thao-luan