Cho a,b,c \(\ne\) 0 và a=b+c
CMR:\(P=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{2\left(a+b+c\right)}{abc}=0\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)}\)
\(=\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\) là số hữu tỉ
Hằng đẳng thức:
\(\left(x-y-z\right)^2=x^2+y^2+z^2+2\left(yz-xy-zx\right)=x^2+y^2+z^2-2\left(xy+xz-yz\right)\)
\(\Rightarrow x^2+y^2+z^2=\left(x-y-z\right)^2+2\left(xy+xz-yz\right)\)
Giờ thay \(x=\dfrac{1}{a}\) ; \(y=\dfrac{1}{b}\); \(z=\dfrac{1}{c}\) là ra cái người ta làm
Ta có : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)
\(\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+2.\dfrac{c+b-a}{abc}\)
\(\text{=}\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2\left(do-a\text{=}b+c\right)\)
\(\Rightarrow\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\text{=}\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}\)
\(\text{=}\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\)
Do \(a,b,c\) là các số hữu tỉ khác 0 nên
\(\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) là một số hữu tỉ
\(\Rightarrow dpcm\)
Ta có :
P = \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2ac}+\dfrac{1}{2ab}-\dfrac{1}{2bc}}\)
\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{1}{2abc}\left(b+c-a\right)}\)
\(=\sqrt{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}=\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) (do a = b + c)
=> P là số hữu tỉ với a,b,c \(\ne0\)
P =
(do a = b + c)
=> P là số hữu tỉ với a,b,c
\(\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{b}\Leftrightarrow ab=bc+ac\Leftrightarrow2ab-2bc-2ac=0\\ \Leftrightarrow\sqrt{a^2+b^2+c^2}=\sqrt{a^2+b^2+c^2+2ab-2bc-2ac}\\ =\sqrt{\left(a+b-c\right)^2}=\left|a+b-c\right|\left(dpcm\right)\)
Có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow 2ab-2bc-2ca=0\)
\(\Rightarrow A=\sqrt{a^2+b^2+c^2+2ab-2bc-2ca}=\sqrt{(a+b-c)^2}=|a+b-c|\)
⇒ A là số hữu tỉ
Câu 3 : Ta có :
\(\left\{{}\begin{matrix}a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\\b^2+1=b^2+ab+bc+ca=\left(b+c\right)\left(b+a\right)\\c^2+1=c^2+ab+bc+ca=\left(c+a\right)\left(c+b\right)\end{matrix}\right.\)
Thay vào biểu thức ta được :
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Vậy biểu thức trên là một số hữu tỉ .
Wish you study well !!!
Ta có: \(a=b+c\Rightarrow c=a-b\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)
=> Là một số hữu tỉ do a,b,c là số hữu tỉ
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
\(=\sqrt{\dfrac{\left(bc\right)^2+\left(ac\right)^2+\left(ab\right)^2}{\left(abc\right)^2}}\)
\(=\dfrac{\sqrt{\left(bc+ac+ab\right)^2-2abc\left(a+b+c\right)}}{abc}\)
(áp dụng HĐT: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)\))
\(=\dfrac{\sqrt{\left[a\left(b+c\right)+bc\right]^2-2abc\left[a+\left(b+c\right)\right]}}{abc}\)
\(=\dfrac{\sqrt{\left(a^2+bc\right)^2-4a^2bc}}{abc}\)
\(=\dfrac{\sqrt{a^4+2a^2bc+\left(bc\right)^2-4a^2bc}}{abc}\)
\(=\dfrac{\sqrt{a^4-2a^2bc+\left(bc\right)^2}}{abc}\)
\(=\dfrac{a^2-bc}{abc}\) là 1 số hữu tỉ (đpcm)
Ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(=\dfrac{\left(b+c\right)^2b^2+\left(b+c\right)^2c^2+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\dfrac{b^4+2b^3c+3b^2c^2+2bc^3+c^4}{b^2c^2\left(b+c\right)^2}\)
\(=\dfrac{\left(b^4+2b^2c^2+c^4\right)+2bc\left(b^2+c^2\right)+b^2c^2}{b^2c^2\left(b+c\right)^2}\)
\(=\dfrac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}\)
\(\Rightarrow\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{\left(b^2+bc+c^2\right)^2}{b^2c^2\left(b+c\right)^2}}=\dfrac{b^2+bc+c^2}{bc\left(b+c\right)}\)
Vì a, b, c là các số hữu tỉ nên \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là số hữu tỉ
a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
\(\Rightarrow2ab\text{=}2bc+2ca\)
\(\Rightarrow2ab-2bc-2ca\text{=}0\)
Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)
\(\text{=}a^2+b^2+c^2\)
Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)
\(\Rightarrow A\text{=}a+b-c\)
Vì a;b;c là các số hữu tỉ suy ra : đpcm
b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)
Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
Từ đây ta thấy giống phần a nên :
\(B\text{=}a+b-c\)
\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)
Suy ra : đpcm.
Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.
Ta có: \(a=b+c\Rightarrow a-b-c=0\)
\(\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{2}{ab}+\dfrac{2}{bc}-\dfrac{2}{ac}\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a-b-c}{abc}\right)\)\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Nên \(P=\sqrt[]{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt[]{\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2}\)
\(=\left|\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right|\) => ĐPCM
Bài này thiếu " a,b,c là các số hữu tỉ " phải không?