\(\Leftrightarrow\hept{\begin{cases}\sqrt{\left(x+30\right)^2+23}=\left(y+30\right)^2+\sqrt{y+17}\\\sqrt{\left(y+30\right)^2+23}=\left(x+30\right)^2+\sqrt{x+17}\end{cases}}\)
giả sử \(x\ge y\Rightarrow\sqrt{\left(y+30\right)^2+23}\ge\sqrt{\left(x+30\right)^2+23}\Rightarrow y\ge x\)
=>x=y
lại có:
\(x+17\ge0\Rightarrow x+30=a\ge13\)
xét \(a^2-\sqrt{a^2+23}=\frac{a^4-a^2-23}{a^2+\sqrt{a^2+23}}=\frac{a^2\left(a^2-1\right)-23}{\sqrt{a^2+23}+a^2}>0\)
=>pt vô no
what hell ?
Bạn giải hộ ai à?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.vi diệu !
hok cũng giỏi ghê
~ tự biên tự diễn hả ~