4 phần 1.3 + 4 phần 3.5 + 4 phần 5.7 + ....... + 4 phần 97.99
gips mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/1*3+1/3*5+...+1/2017*2019
2A=2/1*3+2/3*5+...+2/2017*2019
2A=1-1/3+1/3-1/5+..+1/2017-1/2019
2A=1-1/2019
2A=2018/2019
A=(2018/2019):2
A=1009/2019
A = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2017. 2019
= ( 1 - 1/3 ) + ( 1/3 - 1/5 ) + ... + (1/2017 - 1/2019 )
= 1 - 1/2019
= 2018/2019
S = 1/31 + 1/32 +...+ 1/60
Ta có các phân số : 1/31, 1/32, ..., 1/59 đều lớn hơn 1/60
Nên S > 1/60 + 1/60 + 1/60 +...+ 1/60 ( có tất cả 30 phân số )
= 30/60 = 1/2
Vì 1/2 < 4/5 nên S <4/5
Vậy, chứng tỏ S < 4/5
Chúc bạn học tốt !
Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)
\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006
= 1/1 - 1/2006
= 2006/2006 - 1/2006
= 2005/2006
TÍNH NHANH
B=2 phần 1.3 + 2 phần 3.5 + 2 phần 5.7 +................+ 2 phần 99.101
(Giải thích rõ nha)
B=\(\frac{2}{1.3}+\frac{2}{3.5}+..........+\frac{2}{99.101}\)
B=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...........+\frac{1}{99}-\frac{1}{101}\)
B=\(1-\frac{1}{101}\)
B=\(\frac{100}{101}\)
Đề sai nhá dãy số lẻ ko thể kết thúc bằng số chẵn đc :
Đề này nhá \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.....+\frac{4}{99.101}\)
\(\Rightarrow A=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{101}\right)\)
\(\Rightarrow A=2.\frac{100}{101}=\frac{200}{101}\)
\(A=\frac{4}{1.3}+\frac{4}{3.5}+....+\frac{4}{98.100}\)
\(A=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.........+\frac{2}{98.100}\right)\)
\(A=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{98}-\frac{1}{100}\right)\)
\(A=2.\left(1-\frac{1}{100}\right)\)
\(A=2.\frac{99}{100}\)
\(A=\frac{99}{50}\)
Cứu tôi vs , tôi sắp chết nếu như ko ai giải cho tôi câu này
\(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{97\cdot99}\)
\(=2\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(1-\frac{1}{99}\right)\)
\(=2\cdot\frac{98}{99}\)
\(=\frac{196}{99}\)