Chứng minh rằng:
a.Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3.
b.Trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3.
c.Trong 3 số lẻ liên tiếp luôn có 1 số chia hết cho 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
a. Ta có:
45 + 99 + 180 = 324
Vì: Số tận cùng của nó là số 4
=> 324 chia hết cho 2
Bài 1
chỉ cần tính ra kết quả là đc
Bài 2
Giả sử một số tự nhiên bất kì = n
=> 2 số tự nhiên liên tiếp là n và n+1
- Với n = 2k+1=>n+1 = 2k+2 chia hết 2
- Với n = 2k => n chia hết 2
Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
Gọi ba số lẻ đó lần lượt là: a, a+1, a+2 (a N)
Tổng ba số đó là: a+(a+1)+(a+2)
= a+a+1+a+2
= 3a +3
Vì
Vậy trong ba số le liên tiếp có 1 số chia hết cho 3
3 số tự nhiên liên tiếp có dạng a ; a + 1 ;a + 2
- Nếu a = 3k thì a chia hết cho 3
- Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.( k +1 ) chia hết cho 3
- Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3.( k +1 ) chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
3 số tự nhiên liên tiếp có dạng a ; a + 1 ;a + 2
- Nếu a = 3k thì a chia hết cho 3
- Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.( k +1 ) chia hết cho 3
- Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3.( k +1 ) chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
ủng hộ nha
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3