K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi I, J lần lượt là trung điểm AP, BP
tam giác AMP vuông có trung tuyến MI =>MI=AP2 (1)
tam giác ABP có DJ là đường trung bình =>DJ=AP2 (2)
từ (1, 2)=> MI =DJ (3)
chứng minh tương tự ta có DI =LJ (4)
mặt khác DIPJ là hình bình hành =>DIP^=DJP^ (5)
và có PIM^=2.PAM^ và PJL^=2.PBL^ mà PAM^=PBL^ suy ra PIM^=PJL^ (6)
cộng (5), (6) vế theo vấ ta được DIM^=LJD^ (7)
từ (3, 4, 7)=>△DIM=△LJD
suy ra DM =LD (đpcm)

14 tháng 8 2019

À đúng rồi đấy chứ không sao đâu tại bấm vào nút link mà lộn qua nút sai 

a: Xét tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

b: Ta có: ABCD là hình bình hành

=>AD//BC

Ta có: AD//BC

AP\(\perp\)BC

Do đó: AP\(\perp\)AD

Ta có: AP\(\perp\)AD

CQ\(\perp\)AD

Do đó: AP//CQ

ta có: AD//CB

\(Q\in\)AD

P\(\in\)BC

Do đó: AQ//CP

Xét tứ giác APCQ có

AP//CQ

AQ//CP

Do đó: APCQ là hình bình hành

=>AC cắt PQ tại trung điểm của mỗi đường

mà N là trung điểm của AC

nên N là trung điểm của PQ

=>P,N,Q thẳng hàng

c: Để hình bình hành ABCD trở thành hình vuông thì ABCD vừa là hình chữ nhật vừa là hình thoi(1)

Hình bình hành ABCD trở thành hình chữ nhật khi \(\widehat{ABC}=90^0\)(2)

Hình bình hành ABCD trở thành hình thoi khi BA=BC(3)

Từ (1),(2),(3) suy ra \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\BA=BC\end{matrix}\right.\)

9 tháng 12 2023

Vẽ hộ mik hình đc ko bạn

20 tháng 12 2022

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Xét ΔABC có CF/CA=CD/CB

nên DF//AB và DF=AB/2

=>Di//AB và DI=AB

=>ABDI là hình bình hành