Chứng minh biểu thức A không phụ thuộc vào x,y (x>0,y>0,x≠y)
A=\(\left(\dfrac{2\sqrt{xy}}{x-y}+\dfrac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+2\sqrt{y}}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=1
\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)
Đề sai
\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)
\(=2\sqrt{x}\)
\(A=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+y}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)}{\left(x-y\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}+y}{x+y}\cdot\dfrac{x+\sqrt{xy}-\sqrt{xy}+y}{x-y}\)
\(=\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{x+\sqrt{xy}+y}{x-y}\)
\(=\dfrac{\sqrt{xy}+y-x-\sqrt{xy}-y}{x-y}=\dfrac{-x}{x-y}\)
A/
\(A=\frac{(\sqrt{x}+\sqrt{y})^2-(\sqrt{x}-\sqrt{y})^2}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}.\frac{x-y}{\sqrt{xy}}\\ =\frac{x+y+2\sqrt{xy}-(x+y-2\sqrt{xy})}{x-y}.\frac{x-y}{\sqrt{xy}}\\ =\frac{4\sqrt{xy}}{x-y}.\frac{x-y}{\sqrt{xy}}=4\)
Vậy biểu thức A không phụ thuộc giá trị vào biến.
B/
\(B=\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{x+\sqrt{xy}+y}-2\sqrt{y}\\
=\sqrt{x}+\sqrt{y}-(\sqrt{x}-\sqrt{y})-2\sqrt{y}\\
=2\sqrt{y}-2\sqrt{y}=0\)
Vậy giá trị của biểu thức B không phụ thuộc vào giá trị của biến.
\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}}{x-y}\left(dkxd:x,y\ge0,x\ne y\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x^2}-\sqrt{y^2}}.\dfrac{x-y}{\sqrt{xy}}\)
\(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}.\dfrac{x-y}{\sqrt{xy}}\)
\(=\dfrac{4\sqrt{xy}}{\sqrt{xy}}=4\)
\(B=\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\left(dkxd:x,y\ge0,x\ne y\right)\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-2\sqrt{y}\\ =0\)
Vậy biểu thức A và B không phụ thuộc vào biến.
a:
Sửa đề: \(A=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(A=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: căn xy>0
\(x-\sqrt{xy}+y=x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}\sqrt{y}+\dfrac{1}{4}y+\dfrac{3}{4}y\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y>0\)
=>A>0
a) \(A=\left(\dfrac{\sqrt{x}-\sqrt{y}}{x-y}+\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\dfrac{\sqrt{xy}+1}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}.\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}+1}=\dfrac{1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}}{\sqrt{xy}+1}=\dfrac{\sqrt{xy}+1}{\sqrt{xy}+1}=1\)
b) \(B=3x-1-\sqrt{x^2-6x+9}\)
\(=3x-1-\sqrt{\left(x-3\right)^2}=3x-1-\left|x-3\right|\)
\(=\left[{}\begin{matrix}3x-1-x+3\left(x\ge3\right)\\3x-1+x-3\left(x< 3\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}2x+2\left(x\ge2\right)\\4x-4\left(x< 3\right)\end{matrix}\right.\)
a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)
\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)
b) Xét tử:
\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1)
Xét mẫu:
\(x+\sqrt{xy}+y\)
\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)
Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2)
Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm)
\(A=\left(\dfrac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(x-y\right)}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(x-y\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1\)