K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

\(\Delta ABC\)vuông tại A(gt)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(\Leftrightarrow55^o+\widehat{C}=90^o\)

\(\Leftrightarrow\widehat{C}=90^o-55^o\)

\(\Leftrightarrow\widehat{C}=35^o\)

19 tháng 9 2018

A B C

Vì tam giác ABC vuông tại A (gt)

=> Góc A = 90 độ

Xét tam giác ABC ta có:

Góc A + Góc B + Góc C = 180 độ ( Tổng các góc của tam giác )

Hay 90 độ + 55 độ + Góc C = 180 độ

=> 145 độ + Góc C = 180 độ

=> Góc C = 180 độ - 145 độ

=> Góc C = 35 độ

9 tháng 11 2021

gt là cái j hả bạn :)

 

24 tháng 3 2016

ông hãy treo cổ tôi chết đi

3 tháng 5 2016

hãy treo cổ tôi

8 tháng 5 2016

ông nói tôi bị treo cổ

 mà nói đúng thì ông bị chém đầu, ông lại nói bị treo cổ là đúng 

=> ông k bị làm sao.

25 tháng 1 2017

a) Vì \(\Delta\)ABC cân tại A

=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)

hay \(\widehat{EBM}\) = \(\widehat{ICM}\)

Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:

BM = CM (suy từ gt)

\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)

=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)

=> EB = IC (2 cạnh t/ư)

Ta có: AE + EB = AB

AI + IC = AC

mà EB = IC; AB = AC => AE = AI

b) Gọi giao điểm của AM và EI là D.

\(\Delta\)EBM = \(\Delta\)ICM (câu a)

=> EM = IM (2 cạnh t/ư)

Xét \(\Delta\)AEM và \(\Delta\)AIM có:

AE = AI (câu a)

AM chung

EM = IM (c/m trên)

=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)

=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)

hay \(\widehat{EAD}\) = \(\widehat{IAD}\)

Xét \(\Delta\)ADE và \(\Delta\)ADI có:

AE = AI (câu a)

\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)

AM chung

=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)

=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)

Do \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\)

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC Câu c bên kia.
25 tháng 1 2017

A B C E I M D

a) Vì \(\Delta\)ABC cân tại A

=> AB = AC và \(\widehat{ABC}\) = \(\widehat{ACB}\)

hay \(\widehat{EBM}\) = \(\widehat{ICM}\)

Xét \(\Delta\)EBM vuông tại E và \(\Delta\)ICM vuông tại I có:

BM = CM (suy từ gt)

\(\widehat{EBM}\) = \(\widehat{ICM}\) (c/m trên)

=> \(\Delta\)EBM = \(\Delta\)ICM (ch - gn)

=> EB = IC (2 cạnh t/ư)

Ta có: AE + EB = AB

AI + IC = AC

mà EB = IC; AB = AC => AE = AI

b) Gọi giao điểm của AM và EI là D.

\(\Delta\)EBM = \(\Delta\)ICM (câu a)

=> EM = IM (2 cạnh t/ư)

Xét \(\Delta\)AEM và \(\Delta\)AIM có:

AE = AI (câu a)

AM chung

EM = IM (c/m trên)

=> \(\Delta\)AEM = \(\Delta\)AIM (c.c.c)

=> \(\widehat{EAM}\) = \(\widehat{IAM}\) (2 góc t/ư)

hay \(\widehat{EAD}\) = \(\widehat{IAD}\)

Xét \(\Delta\)ADE và \(\Delta\)ADI có:

AE = AI (câu a)

\(\widehat{EAD}\) = \(\widehat{IAD}\) (c/m trên)

AM chung

=> \(\Delta\)ADE = \(\Delta\)ADI (c.g.c)

=> DE = DI (2 cạnh t/ư) Do đó D là tđ của EI (1) và \(\widehat{ADE}\) = \(\widehat{ADI}\) (2 góc t/ư) mà \(\widehat{ADE}\) + \(\widehat{ADI}\) = 180o (kề bù) => \(\widehat{ADE}\) = \(\widehat{ADI}\) = 90o Do đó AD \(\perp\) EI hay AM \(\perp\) EI (2) Từ (1) và (2) suy ra AM là đg trung trực của EI. c) Vì AE = AI nên \(\Delta\)AEI cân tại A => \(\widehat{AEI}\) = \(\widehat{AIE}\) Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{AEI}\) + \(\widehat{AIE}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{AEI}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{AEI}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (3)

Do \(\Delta\)ABC cân tại A

=> \(\widehat{ABC}\) = \(\widehat{ACB}\)

Áp dụng tc tổng 3 góc trong 1 tg ta có:

\(\widehat{ABC}\) + \(\widehat{ACB}\) + \(\widehat{BAC}\) = 180o

=> 2\(\widehat{ABC}\) = 180o - \(\widehat{BAC}\)

=> \(\widehat{ABC}\) = \(\frac{180^o-\widehat{BAC}}{2}\) (4) Từ (3) và (4) suy ra \(\widehat{AEI}\) = \(\widehat{ABC}\) mà 2 góc này ở vị trí đồng vị nên EI // BC. d) Ta có: BM = \(\frac{1}{2}\)BC = 9cm

Xét \(\Delta\)ABM và \(\Delta\)ACM có:

AB = AC

\(\widehat{BAM}\) = \(\widehat{CAM}\) (tự suy ra)

AM chung

=> \(\Delta\)ABM = \(\Delta\)ACM (c.g.c)

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) (2 góc t/ư)

\(\widehat{AMB}\) + \(\widehat{AMC}\) = 180o (kề bù)

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = 90o

Do đó AM \(\perp\) BC

=> \(\Delta\)ABM vuông tại M

Áp dụng định lý pytago vào \(\Delta\)ABM vuông tại M có:

AB2 = AM2 + BM2

=> 152 = AM2 + 92

=> AM = 12cm

25 tháng 1 2017

tks nhìu nghe @Hoàng Thị Ngọc Anh

NV
28 tháng 3 2023

a.

Xét hai tam giác BAC và BHA có:

\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta BAC\sim\Delta BHA\left(g.g\right)\)

b.

Áp dụng định lý Pitago cho tam giác vuông ABC:

\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)

Do \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AC}{AH}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\)

Áp dụng định lý Pitago cho tam giác vuông ABH:

\(BH=\sqrt{AB^2-AH^2}=\dfrac{9}{5}\)

\(CH=BC-BH=\dfrac{16}{5}\)

c.

Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:

\(\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (1)

Áp dụng định lý phân  giác cho tam giác ABH:

\(\dfrac{AM}{HM}=\dfrac{AB}{BH}\) (2)

Lại có \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AB}{BH}\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{DC}{AD}=\dfrac{AM}{HM}\Rightarrow AM.AD=HM.CD\)

NV
28 tháng 3 2023

loading...